感知机和SVM的区别

感知机和SVM的区别:

1、相同点

都是属于监督学习的一种分类器(决策函数)。

2、不同点

  • 感知机追求最大程度正确划分,最小化错误,效果类似紫线,很容易造成过拟合。
  • 支持向量机追求大致正确分类的同时,一定程度上避免过拟合,效果类似下图中的黑线。
  • 感知机使用的学习策略是梯度下降法,而SVM采用的是由约束条件构造拉格朗日函数,然后求偏导令其为0求得极值点。这里特别说明下一般我们的拉格朗日函数是符合凸函数的,因此对于凸函数一定存在极值点,也是唯一的最优解。而一般的非凸函数,只好采用梯度下降法一步一步的求得极值点,如果非凸函数还是采用求导令为0,可能找不到极值点!因为鞍点也是导数为,但却不是极值点的特例,如y = x^3函数。导数为0是函数极值点的必要条件。

  • 11
    点赞
  • 16
    收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论 1

打赏作者

老司机的诗和远方

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值