hdu6053 多校第二场(莫比乌斯函数,枚举)

之前不知道莫比乌斯反演,看了一波,然后有些许理解,这个题其实就是使用了莫比乌斯函数U的定义,详细的解题报告这里说的比较清楚

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<string>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cstring>
#define clr(x) memset(x,0,sizeof(x))
using namespace std;
#define LL long long

const int N = 100005;
const int MOD = 1e9+7;
bool vis[N];
int U[N];
int prime[N];
int cnt;
void GetMU()
{
    memset(vis,0,sizeof(vis));
    U[1] = 1;
    cnt = 0;
    for(int i=2; i<N; i++)
    {
        if(!vis[i])
        {
            prime[cnt++] = i;
            U[i] = -1;
        }
        for(int j=0; j<cnt&&i*prime[j]<N; j++)
        {
            vis[i*prime[j]] = 1;
            if(i%prime[j]) U[i*prime[j]] = -U[i];
            else
            {
                U[i*prime[j]] = 0;
                break;
            }
        }
    }
}
LL quickPow(LL a,LL b)
{
    LL ans = 1;
    while(b)
    {
        if(b&1)
        {
            ans *= a;
            ans %= MOD;
        }
        a*=a;
        a %= MOD;
        b>>=1;
    }
    return ans;
}
int dat[N];
int mi,ma;
int main()
{
    int t;
    GetMU();
    scanf("%d",&t);
    int _case = 0;
    while(t--)
    {
        int n;
        mi = 9999999;
        ma = 0;
        scanf("%d",&n);
        clr(dat);
        for(int i = 0;i<n;i++)
        {
            int temp;
            scanf("%d",&temp);
            dat[temp]++;
            mi = min(mi,temp);
            ma = max(ma,temp);
        }
        for(int i = 1;i<=ma;i++)dat[i] += dat[i-1];
        LL ans = 0;
        for(int i = 2;i<=mi;i++)
        {
            LL cur = -U[i];
            for(int j = 1;j*i<=ma;j++)
            {
                int l = i*j;
                int r = min(i*j+i-1,ma);
                cur = cur*(quickPow(j,dat[r]-dat[l-1]))%MOD;
            }
            ans += cur;
            ans = (ans+MOD)%MOD;
        }
        printf("Case #%d: %lld\n",++_case,ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值