线代知识点

一、行列式

n阶行列式:

          

这里 \sum_{j_{1}j_{2}\cdot \cdot \cdot j_{n}}^{}{} 表示对所有n级排列求和, \tau(j_{1}j_{2}j_{3}\cdot \cdot \cdot j_{n})表示排列 j_{1}j_{2}j_{3}\cdot \cdot \cdot j_{n} 的逆序数。每项由不同行、不同列的n个元素乘积组成,没项的正负号取决于 逆序数 \tau

行列式性质:

1、行列互换,其值不变

2、行列式中某行/列元素全为0,则行列式为0

3、行列式中某行/列元素有公因子k(k不为0),则k可提到行或列外面

          

4、行列式某行/列元素均是两个元素之和,则可拆成两个行列式之和

          

 

5、行列式两行/列互换,值取反

6、行列式两行/列元素相等或对应成比例,行列式为0

7、行列式中某行/列的k倍加到另一行/列,行列式值不变

余子式&代数余子式:

在n阶行列式中,去掉元素 a_{ij } 所在的第i行,第j列元素,有剩下的元素按原来的位置于顺序组成的n-1阶行列式称为元素aij的余子式,记成 M_{ij }

余子式 M_{ij}(-1)^{i+j} 后称为 a_{ij} 的代数余子式,记 A_{ij}

 

克拉默法则:

n个方程n个未知量构成的非齐次线性方程组

          

的系数行列式\left| A \right|\ne0,则方程组有唯一解,且 x_i = \frac{\left| A_i \right|}{\left| A \right|},i=1,2,3.....其中 \left| A_i \right|\left| A\right|中第i个元素替换成方程组右端的常数项 b_1,b_2,...b_n后所构成的行列式。

推论:

若包含n个方程n个未知量的齐次线性方程组(即 b_1,b_2,...b_n 都为0)的系数 \left| A \right|\ne0 ,则方程组有唯一0解,反之,若齐次线性方程组有非零解,则其行列式等于0

 

矩阵:

特殊矩阵:零矩阵(所有元素都为零)、单位矩阵(主对角线元素均为1,其余元素为0)、数量矩阵(数k和单位矩阵的乘积)、对角矩阵(非主对角元素均为0)、上(下)三角矩阵(当i>/<j时,a_{ij}=0,为上/下三角矩阵)、对称矩阵(A^{T}=A)、反对称矩阵(A_{T} = -A)、正交矩阵(A_T=A^{-1}

矩阵的逆:n阶方阵,AB=BA=E,B是A的逆矩阵 \Leftrightarrow \left| A \right| \ne 0

 

向量:

线性判别五大定理:

1、向量 \beta 可由向量组 \alpha_{1},\alpha_2,...,\alpha_n 线性表出 \Leftrightarrow 非齐次线性方程组[\alpha_{1},\alpha_2,...,\alpha_n]\left[ x_1,x_2,...,x_n \right]^T=\beta 有解  \Leftrightarrow r[\alpha_{1},\alpha_2,...,\alpha_n] = r[\alpha_{1},\alpha_2,...,\alpha_n,\beta]

2、向量组\alpha_{1},\alpha_2,...,\alpha_n线性相关  \Leftrightarrow 齐次线性方程组[\alpha_{1},\alpha_2,...,\alpha_n]\left[ x_1,x_2,...,x_n \right]^T=\beta 有非零解 \Leftrightarrow r[\alpha_{1},\alpha_2,...,\alpha_n] < =n

3、向量组a_1,a_2,a_3,...,a_n(a>2)线性相关的充要条件为:向量组中至少一个向量可由其余n-1个向量线性表出

4、若向量组a_1,a_2,...,a_n线性无关,而向量组向量组a_1,a_2,...,a_n,b线性相关,则 b 可由 a_1,a_2,...,a_n 线性表出,且表出法唯一

5、若向量组(1)b_1,b_2,...,b_s 中的每一个向量 b_i 都可由向量组向量组 \\(2)a_1,a_2,...,a_t 线性表出,且s>t,则向量组 b_1,b_2,...,b_n 线性相关,若(1)中的每一个向量 b_i 均可由(2)线性表出,且(1)线性无关,则 s\leq t

 

向量空间

定义1、

\xi_1,\xi_2,...,\xi_n 是 R^n 中线性无关的有序向量组,则任一向量 \alpha \in R^n 均可由 \xi_1,\xi_2,...,\xi_n 线性表出,\alpha = a_1\xi_1+a_2\xi_2+...+a_n\xi_n,\\ 则称有序向量组 \xi_1,\xi_2,...,\xi_n 是 R^n 的一个基,基向量的个数n成为向量的维数,而 [a_1,a_2,...,a_n]([a_1,a_2,...,a_n]^T)称为向量 \alpha 在基 \xi_1,\xi_2,...,\xi_n 下的坐标,或 称为 \alpha 的坐标行(列)向量

定理2、

\eta_1,\eta_2,...,\eta_n 和 \xi_1,\xi_2,...,\xi_n 是R^n 的两个基,且有关系 [\eta_1,\eta_2,...,\eta_n]=[\xi_1,\xi_2,...,\xi_n]C\\ 则称上式为由基 \eta_1,\eta_2,...,\eta_n 到基 \xi_1,\xi_2,...,\xi_n 的基变换公式,矩阵C称为由基 \eta_1,\eta_2,...,\eta_n 到基 \xi_1,\xi_2,...,\xi_n 的过渡矩阵,C是可逆矩阵

定理3、

\alpha 在基 \eta_1,\eta_2,...,\eta_n 和\xi_1,\xi_2,...,\xi_n 下的坐标分别为 x=[x_1,x_2,...,x_n]^T,y=[y_1,y_2,...,y_n]^T ,即 \alpha=[\eta_1,\eta_2,...,\eta_n]x=[\xi_1,\xi_2,...,\xi_n]y\\ 又基 \eta_1,\eta_2,...,\eta_n 到基 \xi_1,\xi_2,...,\xi_n 的过度矩阵为C,即[\eta_1,\eta_2,...,\eta_n]=[\xi_1,\xi_2,...,\xi_n]C ,则 \\ \alpha = [\eta_1,\eta_2,...,\eta_n]x = [\xi_1,\xi_2,...,\xi_n]y = [\xi_1,\xi_2,...,\xi_n]Cy\\  得 x=Cy 或 y=C^{-1}x ,称为坐标变换公式

正交变换:

设A是n阶方阵,满足 A^TA=E ,则称A是正交矩阵

设A是正交矩阵,则称 Y=AX 为正交变换,正交变换保持向量内积不变,即保持向量长度,两向量间的夹角不变

 

线性方程组

1、齐次线性方程组:

当r(A)=n时(a_1,a_2,...,a_n 线性无关),Ax=0有唯一零解

当r(A)<n时,Ax=0有非零解,且有n-r个线性无关解

2、非齐次线性方程组:、

r(A)\ne r([A,b]) (b不能由 a_1,a_2,...,a_n 线性表出),Ax=b无解

r(A)= r([A,b])=n ( a_1,a_2,...,a_n 线性无关,且能线性表出b),Ax=b有唯一解

r(A)= r([A,b])=r<n ( a_1,a_2,...,a_n 线性相关,且能线性表出b),Ax=b有无穷解

 

特征值

设A是n阶方阵,\lambda 是一个数,若存在n维非零向量\xi ,使得 A\xi=\lambda\xi,\\ 则称 \lambda 是A的特征值,\xi 是A对应于特征值 \lambda 的特征向量。\\ A\xi=\lambda\xi\Rightarrow(\lambda E-A)\xi = 0 ,因为 \xi\ne0 ,所以 |\lambda E-A|=0,称为A的特征方程

 

二次型

n 元变量 x_1,x_2,...,x_n 的二次齐次多项式

           \\f(x_1,x_2,...,x_n)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}{a_{ij}x_ix_j}

称为n元二次型,简称二次型。称 f(x)=x^TAx 为二次型 f(x_1,x_2,...,x_n) 的矩阵表达式,A是对称矩阵

线性变换:

对于n元二次型 f(x_1,x_2,...,x_n) ,若令

          

x=[x_1,x_2,x_3,...,x_n]^T,Cn\times n系数矩阵, y=[y_1,y_2,...,y_n]^T,则可写为:x=Cy\\ 上式称为从 y_1,y_2,...,y_n 到x_1,x_2,...,x_n 的线性变换,若 C可逆,即 |C|\ne 0,\\,则称为可逆线性变换。现给出 f(x)=x^TAx ,令 x=Cy ,则 \\ f(x)= (Cy)^TA(Cy)=y^T(C^TAC)y\\ 记 B= C^TAC ,则 f(x)=y^TBy=g(y)\\ 此时,二次型 f(x)=x^TAx 通过线性变换x=Cy 得到一个新二次型 g(y)=y^TBy

可逆线性变换不会改变二次型的秩。

矩阵合同:

设A、B为n阶实对称矩阵,若存在可逆矩阵C,使得 \\C^TAC=B\\ 则称A与B合同,记 A\simeq B,此时称 f(x), g(y)为合同二次型

可以看出,在二次型背景下,A表征的是 f(x)=x^TAx 的“形态”,B表征的是 g(y)=y^TBy 的“形态”。在二次型中,A与B合同,就是指在同一个二次型在可逆线性变换下的两个不同状态的联系。

二次型的标准型、规范型

若二次型中只有平方项,没有交叉项(即所有交叉项的系数全为零)的二次型称为标准型,若标准型中,系数仅为1,0,-1的二次型称为规范型。

任何二次型均可通过配方法(可逆线性变换)化成标准型及规范型:任何对称矩阵 A ,必然存在可逆矩阵 C ,使得 C^TAC = \Lambda

也可以通过正交变换化成标准型:任何实对称矩阵 A ,一定存在正交矩阵 Q ,使得 Q^{-1}AQ=Q^TAQ=\Lambda

惯性定理:

无论选取什么可逆线性变换,将二次型化成标准型或规范型,其正项之数p,负项之数q都是不变的,p称为正惯性指数,q称为负惯性指数。

正定二次型:

n元二次型 f(x_1,x_2,...,x_n)=x^TAx ,若对任意的 x=[x_1,x_2,...,x_n]^T\ne0 ,均有 x^TAx>0,则称f为正定二次型,称二次型对应矩阵A为正定矩阵

二次型正定的必要条件:

(1).a_ii>0(i=1,2,...,n);(2).|A|>0

  • 7
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本书是为准备考研的学生复习线性代数而编写的一本辅导讲义,由编者近年来的辅导班笔记 改写而成,本书也可作为大一新生学习线性代数时的参考书, 此次修订,补充、更换、编写了一些新题,同时,针对同学们不太好理解或不大注意的地方,也 相应增加了一些新的说明。 全书共分六章及一个附录,每章均由知识结构网络图、基本内容与重要结论、典型例题分析选 讲以及练习题精选四部分组成。为的是方便同学们总结归纳以及更好地掌知识间的相互透 与转换。 本书力求在较短的时间内,用不多的篇幅,帮助同学们搞清基本概念,掌握基本理论和公式, 了解重点和难点并澄清一些常犯的错误与疑惑。一方面,通过对典型例题的分析讲评,帮助同学 们梳理解题的思路,熟悉常用的方法和技巧;另一方面,精编适量的练习题,帮助同学们更好地理 解和掌握基本内容、基本解题方法,达到巩固、悟新与提高的目的,另外,题后的点评与评注,其日 的在于帮助同学们弄清重点、难点、知识结合点以及解题的基本方法和应注意的问题 在考研数学中,线性代数占5个考题(2个选择,1个填空,2个解答),分值为34分,其平均用 时应当为40分钟左右。因而我们在附录中设计了45分钟的水平测试,希望同学们在复习完本书 之后,用两套自测题及时地进行查漏补缺。线性代数考试大纲对于数学一、二、三来说基本上 样,近年来考题也是趋同,本书中除向量空间仅数一考生要准备外,其余部分大家都应复习。 另外,为了更好地帮助同学们进行复习,“李水乐考研数学辅导团队”特在新浪微博上开设答 疑专区,同学们在考研数学复习中,如若遇到任何问题,即可在线留言,团队老师将尽心为你解答 请访问weibo.com@清华李水乐考研数学辅导团队。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值