线代【矩阵的运算】--猴博士爱讲课

本文深入介绍了矩阵的加减运算、矩阵乘法及其应用,包括矩阵乘法的性质和矩阵的逆。通过实例解析了矩阵乘法的计算过程,并展示了如何利用矩阵的逆来解决线性方程组问题。此外,还讨论了矩阵的秩和矩阵可逆的条件,为理解和应用矩阵理论提供了基础。
摘要由CSDN通过智能技术生成

第三四课 矩阵的运算

1/3矩阵加减

已知 A = [ 1 3 2 4 5 6 ] , B = [ 7 8 9 10 11 12 ] , 试求 2 A + 3 B 已知A= \left[\begin{matrix} 1 & 3\\ 2 & 4\\ 5 & 6 \\ \end{matrix}\right], B= \left[\begin{matrix} 7 & 8\\ 9 & 10\\ 11 & 12 \\ \end{matrix}\right] ,试求2A+3B 已知A= 125346 ,B= 791181012 ,试求2A+3B

2 A = [ 1 ∗ 2 3 ∗ 2 2 ∗ 2 4 ∗ 2 5 ∗ 2 6 ∗ 2 ] = [ 2 6 4 8 10 12 ] 3 B = [ 7 ∗ 3 8 ∗ 3 9 ∗ 3 10 ∗ 3 11 ∗ 3 12 ∗ 3 ] = [ 21 24 27 30 33 36 ] 2 A + 3 B = [ 2 + 21 6 + 24 4 + 27 8 + 30 10 + 33 12 + 36 ] = [ 23 30 31 38 43 48 ] 2A= \left[\begin{matrix} 1*2 & 3*2\\ 2*2 & 4*2\\ 5*2 & 6*2 \\ \end{matrix}\right] =\left[\begin{matrix} 2 & 6\\ 4 & 8\\ 10 & 12 \\ \end{matrix}\right]\\ 3B= \left[\begin{matrix} 7*3 & 8*3\\ 9*3 & 10*3\\ 11*3 & 12*3 \\ \end{matrix}\right]= \left[\begin{matrix} 21 & 24\\ 27 & 30\\ 33 & 36 \\ \end{matrix}\right]\\ 2A+3B= \left[\begin{matrix} 2+21 & 6+24\\ 4+27& 8+30\\ 10+33 & 12+36 \\ \end{matrix}\right]= \left[\begin{matrix} 23 & 30\\ 31 & 38\\ 43& 48\\ \end{matrix}\right] 2A= 122252324262 = 24106812 3B= 739311383103123 = 212733243036 2A+3B= 2+214+2710+336+248+3012+36 = 233143303848

2/3矩阵相乘

例一:
已知 A = [ 1 3 2 4 5 6 ] , B = [ 7 8 9 10 11 12 ] , 试求 A ∗ B 已知A= \left[\begin{matrix} 1 & 3\\ 2 & 4\\ 5 & 6 \\ \end{matrix}\right], B= \left[\begin{matrix} 7 & 8& 9\\ 10&11 & 12 \\ \end{matrix}\right] ,试求A*B 已知A= 125346 ,B=[710811912],试求AB

方法:前行乘后列

[前面的列数必须等于后面的行数,才可以相乘]

A ∗ B = [ 1 3 2 4 5 6 ] ∗ [ 7 8 9 10 11 12 ] A*B= \left[\begin{matrix} 1 & 3\\ 2 & 4\\ 5 & 6 \\ \end{matrix}\right]* \left[\begin{matrix} 7 & 8& 9\\ 10&11 & 12 \\ \end{matrix}\right] AB= 125346 [710811912]

= [ 1 × 7 + 3 × 10 1 × 8 + 3 × 11 1 × 9 + 3 × 12 2 × 7 + 4 × 10 2 × 8 + 4 × 11 2 × 9 + 4 × 12 5 × 7 + 6 × 10 5 × 8 + 6 × 11 5 × 9 + 6 × 12 ] = [ 37 41 45 54 60 66 95 106 117 ] =\left[\begin{matrix} 1×7+3×10 & 1×8+3×11& 1×9+3×12\\ 2×7+4×10&2×8+4×11 & 2×9+4×12 \\ 5×7+6×10&5×8+6×11 & 5×9+6×12 \\ \end{matrix}\right]\\= \left[\begin{matrix} 37 & 41& 45\\ 54 & 60& 66\\ 95 & 106 & 117\\ \end{matrix}\right] = 1×7+3×102×7+4×105×76×101×8+3×112×8+4×115×8+6×111×9+3×122×9+4×125×9+6×12 = 37549541601064566117

例二:
已知 A = [ 1 0 1 0 2 0 1 0 1 ] , B = [ 1 2 3 4 5 6 7 8 9 ] , 试求 A 2 B − 2 A B 已知A= \left[\begin{matrix} 1 &0&1\\ 0 & 2 &0\\ 1 & 0 &1\\ \end{matrix}\right], B= \left[\begin{matrix} 1 & 2 &3\\ 4 & 5 &6\\ 7 & 8 &9\\ \end{matrix}\right] ,试求A^2B-2AB 已知A= 101020101 ,B= 147258369 ,试求A2B2AB

这个时候还像例一那样去进行矩阵的乘法运算就显得十分繁琐,这个时候可以利用
A 2 B − 2 A B = ( A 2 − 2 A ) B = ( A − 2 E ) A B A^2B-2AB=(A^2-2A)B=(A-2E)AB A2B2AB=A22AB=(A2E)AB
【注意:一般情况下AB≠BA】

需要记住的六种情况

image-20221230190146839

3/3矩阵取绝对值

这里需要注意的是:这里提到的求矩阵的绝对值其实是**求矩阵对应的行列式**

image-20221230190717832

1/7涉及到转置的题目

image-20221230191254421

2/7 证明矩阵可逆

有可逆矩阵的条件

image-20221230191443231

例一:
已知 A = [ 1 2 3 0 4 5 0 0 6 ] , 试判断 A 是否可逆 已知A= \left[\begin{matrix} 1 & 2&3\\ 0 & 4 &5\\ 0 & 0 &6\\ \end{matrix}\right], 试判断A是否可逆 已知A= 100240356 ,试判断A是否可逆

∣ A ∣ = ∣ 1 2 3 0 4 5 0 0 6 ∣ = 24 ≠ 0 ∴ A 可逆 |A|= \left|\begin{matrix} 1 & 2&3\\ 0 & 4 &5\\ 0 & 0 &6\\ \end{matrix}\right|=24≠0\\ ∴A可逆 A= 100240356 =24=0A可逆

例二:
设方阵 A 满足 A 2 − A − 2 E = 0 , 证明 A 可逆 设方阵A满足A^2-A-2E=0,证明A可逆 设方阵A满足A2A2E=0,证明A可逆

A 2 − A − 2 E = 0 − − > A 2 − A = 2 E − − > A 2 − A E = 2 E − − > A ( A − E ) = 2 E − − > A [ 1 2 ( A − E ) ] = E 令 B = 1 2 ( A − E ) 则 A ∗ B = E ∴ A 可逆 A^2-A-2E=0-->A^2-A=2E-->A^2-AE=2E\\ -->A(A-E)=2E-->A[\frac{1}{2}(A-E)]=E\\ 令B=\frac{1}{2}(A-E)\\ 则A*B=E ∴A可逆 A2A2E=0>A2A=2E>A2AE=2E>A(AE)=2E>A[21(AE)]=EB=21(AE)AB=EA可逆

3/7 求逆矩阵

已知 A = [ 1 2 3 4 5 6 7 8 9 ] , 试求 A − 1 已知A= \left[\begin{matrix} 1 & 2 &3\\ 4 & 5 &6\\ 7 & 8 &9\\ \end{matrix}\right] ,试求A^{-1} 已知A= 147258369 ,试求A1

求逆矩阵的过程

image-20221230192840943

【注意这里是左右两边的矩阵同步做行变换

image-20221230193109628

先从上往下做使得下对角线全部变为零,再从下往上做使得上对角线全部变为零,就能得到单位矩阵

4/7利用A·A−1=E或A−1·A=E计算

作用:为了在计算的过程中消除A

已知 A = [ 1 2 3 2 3 4 4 5 7 ] , B = [ 1 2 2 1 ] , C = [ 1 4 2 5 3 6 ] , 求矩阵 X 使其满足 A X B = C 已知A= \left[\begin{matrix} 1 & 2 &3\\ 2 & 3 &4\\ 4 & 5 &7\\ \end{matrix}\right], B= \left[\begin{matrix} 1 & 2 \\ 2 & 1\\ \end{matrix}\right], C= \left[\begin{matrix} 1 & 4\\ 2 & 5\\ 3 & 6\\ \end{matrix}\right] ,求矩阵X使其满足 AXB=C 已知A= 124235347 ,B=[1221],C= 123456 ,求矩阵X使其满足AXB=C

因为矩阵的运算没有除法,所以我们就利用A·A−1=E或A−1*A=E计算

易知 A 可逆,则 A X B = C 可有 A − 1 A X B = A − 1 C E X B = A − 1 C X B = A − 1 C X B B − 1 = A − 1 C B − 1 X = A − 1 C B − 1 X = [ − 1 − 1 1 − 2 5 − 2 2 − 3 1 ] ∗ [ 1 4 2 5 3 6 ] ∗ [ − 1 3 2 3 2 3 − 1 3 ] = [ − 2 1 8 3 − 1 3 − 1 3 − 1 3 ] 易知A可逆,则 AXB=C可有\\A^{-1}AXB=A^{-1}C\\ EXB=A^{-1}C\\XB=A^{-1}C\\XBB^{-1}=A^{-1}CB^{-1}\\X=A^{-1}CB^{-1}\\ X= \left[\begin{matrix} -1 & -1 &1\\ -2 & 5 &-2\\ 2 & -3 &1\\ \end{matrix}\right]* \left[\begin{matrix} 1 & 4\\ 2 & 5\\ 3 & 6\\ \end{matrix}\right]* \left[\begin{matrix} -\frac{1}{3} & \frac{2}{3}\\ \frac{2}{3} & -\frac{1}{3}\\ \end{matrix}\right]= \left[\begin{matrix} -2& 1\\ \frac{8}{3} & -\frac{1}{3}\\ -\frac{1}{3} & -\frac{1}{3}\\ \end{matrix}\right] 易知A可逆,则AXB=C可有A1AXB=A1CEXB=A1CXB=A1CXBB1=A1CB1X=A1CB1X= 122153121 123456 [31323231]= 2383113131

5/7利用A·A*=|A|E或A*·A=|A|E计算

作用:为了在计算的过程中消除A*

已知 A = [ 1 2 3 2 3 4 4 5 7 ] , 且 A ∗ X = A − 1 + X , 求矩阵 X 已知A= \left[\begin{matrix} 1 & 2 &3\\ 2 & 3 &4\\ 4 & 5 &7\\ \end{matrix}\right] ,且A^*X=A^{-1}+X ,求矩阵X 已知A= 124235347 ,AX=A1+X,求矩阵X

当题目中出现A*时,利用A·A*=|A|E或A*·A=|A|E将其变成A代入计算即可**【A*–>A】**

伴随矩阵A*:方阵的行列式的对应的代数余子式行列式的转置
A ∗ = ∣ A 11 A 21 A 31 A 12 A 22 A 32 A 13 A 23 A 33 ∣ A^*= \left|\begin{matrix} A_{11} & A_{21} &A_{31}\\ A_{12}& A_{22} &A_{32}\\ A_{13} & A_{23} &A_{33}\\ \end{matrix}\right| A= A11A12A13A21A22A23A31A32A33

image-20221230200231107

6/7求矩阵的秩

对矩阵进行行变换,使下行左端的0比上行多,直到下面行全为0为止—>【把矩阵化为阶梯型

矩阵的秩等于==【矩阵的秩等于最简型矩阵的非零行(非零子式的最高阶数)】==

image-20221230200759703

7/7已知矩阵的秩,求矩阵里的未知数

已知 B = [ 1 2 3 4 2 U 6 8 3 6 9 P ] , 且 R ( B ) = 1 , 求 U , P 的值 已知B= \left[\begin{matrix} 1 & 2 &3 & 4\\ 2 & U &6 &8\\ 3 & 6 &9 &P\\ \end{matrix}\right] ,且R(B)=1 ,求U,P的值 已知B= 1232U636948P ,R(B)=1,U,P的值

B = [ 1 2 3 4 2 U 6 8 3 6 9 P ] − − > [ 1 2 3 4 0 U − 4 0 0 0 0 0 P − 12 ] , 且 R ( B ) = 1 , 则可知 U − 4 = 0 , P − 12 = 0 ,解得 U = 4 , P = 12 B= \left[\begin{matrix} 1 & 2 &3 & 4\\ 2 & U &6 &8\\ 3 & 6 &9 &P\\ \end{matrix}\right]--> \left[\begin{matrix} 1 & 2 &3 & 4\\ 0 & U-4 &0 &0\\ 0 & 0 &0 &P-12\\ \end{matrix}\right]\\ ,且R(B)=1 ,则可知U-4=0,P-12=0,解得U=4,P=12 B= 1232U636948P > 1002U4030040P12 ,R(B)=1,则可知U4=0P12=0,解得U=4,P=12

本书是为准备考研的学生复习线性代数而编写的一本辅导讲义,由编者近年来的辅导班笔记 改写而成,本书也可作为大一新生学习线性代数时的参考书, 此次修订,补充、更换、编写了一些新题,同时,针对同学们不太好理解或不大注意的地方,也 相应增加了一些新的说明。 全书共分六章及一个附录,每章均由知识结构网络图、基本内容与重要结论、典型例题分析选 讲以及练习题精选四部分组成。为的是方便同学们总结归纳以及更好地掌知识间的相互透 与转换。 本书力在较短的时间内,用不多的篇幅,帮助同学们搞清基本概念,掌握基本理论和公式, 了解重点和难点并澄清一些常犯的错误与疑惑。一方面,通过对典型例题的分析讲评,帮助同学 们梳理解题的思路,熟悉常用的方法和技巧;另一方面,精编适量的练习题,帮助同学们更好地理 解和掌握基本内容、基本解题方法,达到巩固、悟新与提高的目的,另外,题后的点评与评注,其日 的在于帮助同学们弄清重点、难点、知识结合点以及解题的基本方法和应注意的问题 在考研数学中,线性代数占5个考题(2个选择,1个填空,2个解答),分值为34分,其平均用 时应当为40分钟左右。因而我们在附录中设计了45分钟的水平测试,希望同学们在复习完本书 之后,用两套自测题及时地进行查漏补缺。线性代数考试大纲对于数学一、二、三来说基本上 样,近年来考题也是趋同,本书中除向量空间仅数一考生要准备外,其余部分大家都应复习。 另外,为了更好地帮助同学们进行复习,“李水乐考研数学辅导团队”特在新浪微博上开设答 疑专区,同学们在考研数学复习中,如若遇到任何问题,即可在线留言,团队老师将尽心为你解答 请访问weibo.com@清华李水乐考研数学辅导团队。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值