【数理统计】双因素方差分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

下面用SPSS搞一下。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这一步选择模型,要不要考虑交叉因素,根据实际情况,我先不选交叉因素,选主效应。
在这里插入图片描述
在这里插入图片描述
在这里可以看到随机误差项的自由度为0,不满足方差齐性?这是为什么呢?这是因为SPSS的自由度和上述经典算法是不一致的。

SPSS中是怎么算的呢?以双因素A、B为例,A有5个水平,B有4个水平。

根据公式:总变异=A引发的变异+B引发的变异+AB交叉引发的变异+随机误差引发的变异(这个是修正后的模型)

所以自由度也满足上述关系,如果只有20个样本,df总=20-1=19,dfA=5-1=4,dfB=4-1=3,dfAB=dfA * dfB = 12,那么随机误差引发的变异就为0了,在SPSS中方差齐性检验中自由度就为0了,无法进行下去了。

所以我在SPSS中新增了五条数据。A、B水平个数不变,这样df总=25-1=24,dfA,dfB和dfAB不变,所以随机误差的自由度=24-19=5。

这是我新增的5条数据:
在这里插入图片描述

分析结果如下:
在这里插入图片描述
我自己造完数据后,品牌是有影响的,地区没有。

然后对品牌在进行分析,得到如下结果,品牌123是一类的,品牌4是单独一类的。
在这里插入图片描述
因为地区是没哟影响的,所以后续无需对地区进行事后检验了,但是我还是把事后检验的截图放上来把。

在这里插入图片描述

参考文献
【1】https://blog.csdn.net/liangzuojiayi/article/details/78113451

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值