YOLOv10改进 | 注意力篇 | YOLOv10引入DualAttention注意力

1. DualAttention介绍

1.1  摘要:先前的工作提出了几种策略来降低自注意力机制的计算成本。 其中许多工作考虑将自注意力过程分解为区域和局部特征提取过程,每个过程都会产生更小的计算复杂度。 然而,区域信息通常只能以因下采样而丢失的不需要的信息为代价来获得。 在本文中,我们提出了一种旨在缓解成本问题的新型 Transformer 架构,称为 Dual Vision Transformer (Dual-ViT)。 新架构采用了关键语义路径,可以更有效地将令牌向量压缩为全局语义,并降低复杂性。 然后,通过另一个构建的像素路径,这种压缩的全局语义可以作为学习更精细的像素级细节的有用先验信息。 然后将语义路径和像素路径集成在一起并联合训练,通过这两条路径并行传播增强的自注意力信息。 从此,Dual-ViT 能够在不影响太多精度的情况下降低计算复杂性。 我们凭经验证明,Dual-ViT 提供了比 SOTA Transformer 架构更高的准确性,同时降低了训练复杂性。

官方论文地址:

### 关于YOLOv10中的改进注意力机制 #### 注意力机制的工作原理 在YOLOv10引入了多种先进的注意力机制,这些机制旨在增强模型对于不同尺度目标的检测能力以及整体性能。具体来说: - **静态和动态上下文信息结合**:这种新型的注意力机制能够同时考虑图像的空间位置关系及其语义含义,从而更精准地定位物体并减少误检情况的发生[^2]。 #### 实现方法 为了实现上述提到的各种注意力机制,在代码层面进行了如下操作: - 对于静态与动态上下文相结合的方式,主要是在`ultralytics`库下的训练脚本`train.py`里修改配置文件路径指向特定版本的YAML定义文件(如`yolov10_CoTA.yaml`),并通过加载自定义架构完成初始化过程。 ```python from ultralytics import YOLOv10 model = YOLOv10(r'/projects/ultralytics/ultralytics/cfg/models/v10/yolov10_CoTA.yaml') model.train(batch=16) ``` - 针对MSDA多尺度空洞注意力,则是基于DilateFormer框架设计了一套新的组件,该组件通过对输入特征图应用多个具有不同膨胀系数的卷积核来进行处理,以此达到捕捉更大范围内的依赖性的目的[^3]。 #### 性能提升的研究成果 研究表明,采用这些新颖的注意力方案可以显著改善YOLO系列算法的表现指标。特别是当应用于小尺寸或远距离的目标识别任务时,mAP值提升了约6个百分点左右。此外,还有其他类型的注意力单元被集成进来进一步优化网络表现,比如CA(Coord Attention)[^4] 和 CBAM(Convolutional Block Attention Module)[^5] ,它们分别侧重于坐标轴方向上的响应聚合及通道间的信息交互。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值