模型训练技巧
tang-0203
这个作者很懒,什么都没留下…
展开
-
深度机器学习中的batch的大小对学习效果有何影响?
知乎链接凸函数,凹函数:凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,而且对于凸子集C中任意两个向量, f((x1+x2)/2)>=(f(x1)+f(x2))/2,则f(x)是定义在凸子集c中的凸函数(该定义与凸规划中凸函数的定义是一致的,下凸)。凹多层神经网络通常是一个非凸的函数。非凸的本质难题是鞍点数目太多,除非深度网络设计使得非凸的函数绘景类似一个漏斗(类似“V”型)且最小值转载 2017-11-23 21:32:30 · 4050 阅读 · 0 评论 -
模型训练中batch_size的选择
总结:训练过程中,batch_size的选取对模型精度和模型泛化能力的影响:batch_size过大,模型没有BN层,模型收敛速度变慢。而且模型容易陷入局部最小值,模型精度低。batch_size适中,模型没有BN层,模型收敛速度很快,模型不容易陷入局部最小值,而且模型精度很高。batch_size过小,比如说小于数据集中的类别个数,模型没有BN层,模型会出现不收敛的情况。batch_s...原创 2019-01-31 18:10:58 · 11839 阅读 · 0 评论