R-CNN系列文章
文章平均质量分 93
tang-0203
这个作者很懒,什么都没留下…
展开
-
R-CNN阅读笔记
原文地址:http://blog.csdn.net/hjimce/article/details/50187029作者:hjimce一、相关理论 过去十年在许多视觉识别任务中主要流行的是SIFT与HOG(这两种方法都是基于图像中梯度方向直方图的特征提取方法),但在过去十年中的进步非常缓慢。R-CNN是第一次将CNN用到目标检测领域上来的算法。(待确转载 2017-12-05 16:42:17 · 221 阅读 · 0 评论 -
R-CNN论文详解(另一个版本,包括缩放227,bbx回归等细节)
paper链接:Rich feature hierarchies for accurate object detection and semantic segmentation(21页的论文)21页的论文中有更详细的解释,关于bbx regression, region proposal的缩放等细节操作。&创新点采用CNN网络提取图像特征,从经验驱动的人造特转载 2017-12-05 17:36:35 · 1344 阅读 · 0 评论 -
Bounding box regression详解
Reference link:http://caffecn.cn/?/question/160Question:我只知道,输入检测到的box,回归的是检测到box中心点,以及box长和宽到标记的box的映射。看过rcnn的回归的过程,就是把那个loss函数最小。注意:最后做回归的特征是pool5之后得到的9000多维的特征向量。此外,为了避免转载 2017-12-05 23:02:08 · 347 阅读 · 0 评论 -
CNN网络中,feature map感受野的计算
转载自:http://blog.csdn.net/guojingjuan/article/details/55260907一般来说,一个 CNN 网络中不同的 layers 有着不同尺寸的 感受野(receptive fields)。这里的感受野,指的是输出的 feature map 上的一个节点,其对应输入图像上尺寸的大小。具体的感受野的计算,参见下篇 blog:转载 2017-12-06 15:40:43 · 1516 阅读 · 0 评论 -
Bow词袋
因为SPP-Net这篇论文中提到了Bow模型,因此有必要了解一下。BOW即Bag of words,词袋模型。广泛应用于自然语言处理和信息检索领域(NLP+ Information retrieval)。也可以用到计算机视觉中。其主要思想是要构成一个词袋,然后用词袋中的元素来对一个实例进行编码,构成一个特征向量。举例:在信息检索中,Bag of words model假转载 2017-12-06 16:10:07 · 604 阅读 · 0 评论 -
SPP-Net可以解决不同的数据集之间Scale不一致的问题
问题描述如下:数据集A中训练得到的模型Model-A,现在有一个新的数据集B,但是数据集A和B之间的尺寸差异比较大,数据集A中的物体所占的尺寸相较于B而言,尺寸比较小,因此用Model-A对数据B中的图片提取特征的时候,可以对输入图片Resize到一个更大的Size,这样输入到Model-A中的图片中的物体的尺寸就变大了,这种不一致的问题就得到了缓和。在SPP-Net论文中,作者做翻译 2017-12-06 21:06:45 · 687 阅读 · 0 评论