题目描述
Dyl面前有一个序列A,n个整数,他起初站在0点处,每踩到一个点,他可以得到此点的分数。他最终需要到达n+1点处,当然了,n+1处值为0 Dyl开始行走了,每一次,他可以走一步,或跳一下,跳一下可以向前移动两格,或者使用一个道具,飞跃任意距离。道具一共可以使用k次。
输入输出格式
输入格式:
第一行两个正整数分别代表n,k。 第二行是n个整数,代表题目中的A数列。 数据范围: 1<=N<=500000,0<=k<=10,|a[i]|<=4e3
输出格式:
一个数代表答案
输入输出样例
输入样例#1: 复制
6 1
1 -1 1 -1 -1 1
输出样例#1: 复制
3
说明
样例解释: 0–>1–>3-(使用道具)->6–>7 共得三分。
为什么我写不出来orz
重点在用maxn数组存储用k个道具时的最大值
#include <iostream>
#include <cstring>
#include <limits.h>
using namespace std;
int dp[500010][20]={0};
int a[500010]={0};
int maxn[20]={0};
int main()
{
int n,k;
cin>>n>>k;
int i,j;
for(i=1;i<=n;i++){
cin>>a[i];
}
for(i=1;i<=n+1;i++){
for(j=0;j<=k;j++){
dp[i][j]=dp[i-1][j]+a[i];
}
if(i>1){
for(j=0;j<=k;j++){
dp[i][j]=max(dp[i][j],dp[i-2][j]+a[i]);
}
}
for(j=0;j<k;j++){
dp[i][j+1]=max(maxn[j]+a[i],dp[i][j+1]);
}
for(j=0;j<k;j++){
maxn[j]=max(maxn[j],dp[i][j]);
}
}
int m=-INT_MAX;
for(j=0;j<=k;j++){
m=max(dp[n+1][j],m);
}
cout<<m<<endl;
return 0;
}