python计算precision@k、recall@k和f1_score@k

sklearn.metrics中的评估函数只能对同一样本的单个预测结果进行评估,如下所示:

from sklearn.metrics import classification_report

y_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]
y_pred = [0, 2, 4, 5, 2, 3, 1, 1, 4, 2]

print(classification_report(y_true, y_pred))

而我们经常会遇到需要对同一样本的top-k个预测结果进行评估的情况,此时算法针对单个样本的预测结果是一个按可能性排序的列表,如下所示:

y_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]
y_pred = [[0, 0, 2, 1, 5],
     [2, 2, 4, 1, 4],
     [4, 5, 1, 3, 5],
     [5, 4, 2, 4, 3],
     [2, 0, 0, 2, 3],
     [3, 3, 4, 1, 4],
     [1, 1, 0, 1, 2],
     [1, 4, 4, 2, 4],
     [4, 1, 3, 3, 5],
     [2, 4, 2, 2, 3]]

针对以上这种情况,我们要如何评估算法的好坏呢?我们需要precision@k、recall@k和f1_score@k等指标,下面给出计算这些指标的函数及示例。

from _tkinter import _flatten


# 统计所有的类别
def get_unique_labels(y_true, y_pred):
    y_true_set = set(y_true)
    y_pred_set = set(_flatten(y_pred))
    unique_label_set = y_true_set | y_pred_set
    unique_label = list(unique_label_set)
    return unique_label


# y_true: 1d-list-like
# y_pred: 2d-list-like
# k:针对top-k各结果进行计算(k <= y_pred.shape[1])
def precision_recall_fscore_k(y_trues, y_preds, k=3, digs=2):
    # 取每个样本的top-k个预测结果!
    y_preds = [pred[:k] for pred in y_preds]
    unique_labels = get_unique_labels(y_trues, y_preds)
    num_classes = len(unique_labels)
    # 计算每个类别的precision、recall、f1-score、support
    results_dict = {}
    results = ''
    for label in unique_labels:
        current_label_result = []
        # TP + FN
        tp_fn = y_trues.count(label)
        # TP + FP
        tp_fp = 0
        for y_pred in y_preds:
            if label in y_pred:
                tp_fp += 1
        # TP
        tp = 0
        for i in range(len(y_trues)):
            if y_trues[i] == label and label in y_preds[i]:
                tp += 1

        support = tp_fn

        try:
            precision = round(tp/tp_fp, digs)
            recall = round(tp/tp_fn, digs)
            f1_score = round(2*(precision * recall) / (precision + recall), digs)
        except ZeroDivisionError:
            precision = 0
            recall = 0
            f1_score = 0

        current_label_result.append(precision)
        current_label_result.append(recall)
        current_label_result.append(f1_score)
        current_label_result.append(support)
        # 输出第一行
        results_dict[str(label)] = current_label_result
    title = '\t' + 'precision@' + str(k) + '\t' + 'recall@' + str(k) + '\t' + 'f1_score@' + str(
        k) + '\t' + 'support' + '\n'
    results += title

    for k, v in sorted(results_dict.items()):
        current_line = str(k) + '\t' + str(v[0]) + '\t' + str(v[1]) + '\t' + str(v[2]) + '\t' + str(v[3]) + '\n'
        results += current_line
    sums = len(y_trues)

    # 注意macro avg和weighted avg计算方式的不同
    macro_avg_results = [(v[0], v[1], v[2]) for k, v in sorted(results_dict.items())]
    weighted_avg_results = [(v[0]*v[3], v[1]*v[3], v[2]*v[3]) for k, v in sorted(results_dict.items())]

    # 计算macro avg
    macro_precision = 0
    macro_recall = 0
    macro_f1_score = 0
    for macro_avg_result in macro_avg_results:
        macro_precision += macro_avg_result[0]
        macro_recall += macro_avg_result[1]
        macro_f1_score += macro_avg_result[2]
    macro_precision /= num_classes
    macro_recall /= num_classes
    macro_f1_score /= num_classes

    # 计算weighted avg
    weighted_precision = 0
    weighted_recall = 0
    weighted_f1_score = 0
    for weighted_avg_result in weighted_avg_results:
        weighted_precision += weighted_avg_result[0]
        weighted_recall += weighted_avg_result[1]
        weighted_f1_score += weighted_avg_result[2]

    weighted_precision /= sums
    weighted_recall /= sums
    weighted_f1_score /= sums

    macro_avg_line = 'macro avg' + '\t' + str(round(macro_precision, digs)) + '\t' + str(
        round(macro_recall, digs)) + '\t' + str(round(macro_f1_score, digs)) + '\t' + str(sums) +'\n'
    weighted_avg_line = 'weighted avg' + '\t' + str(round(weighted_precision, digs)) + '\t' + str(
        round(weighted_recall, digs)) + '\t' + str(round(weighted_f1_score, digs)) + '\t' + str(sums)
    results += macro_avg_line
    results += weighted_avg_line

    return results


if __name__ == '__main__':
    y_true = [0, 5, 0, 3, 4, 2, 1, 1, 5, 4]
    y_pred = [[0, 3, 2, 1, 5],
     [2, 0, 4, 1, 3],
     [4, 5, 1, 3, 0],
     [5, 4, 2, 0, 3],
     [2, 0, 1, 3, 5],
     [3, 0, 4, 1, 2],
     [1, 0, 4, 2, 3],
     [1, 4, 5, 2, 3],
     [4, 1, 3, 2, 0],
     [2, 0, 1, 3, 4]]
    res = precision_recall_fscore_k(y_true, y_pred, k=5, digs=2)
    print(res)

我们分别取k=1、k=2、k=3、k=4和k=5,看一下效果。

k=1时:

k=3时:

k=5时:

我们进一步看一下随着k值的增大,precision@k、recall@k和f1_score@k值的变化:

写作过程参考了

https://blog.csdn.net/dipizhong7224/article/details/104579159

https://blog.csdn.net/ybdesire/article/details/96507733

  • 10
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 在sklearn中,可以使用`metrics`模块中的函数来计算F1recallprecision等指标。 以计算F1为例,假设有真实标签 `y_true` 和预测标签 `y_pred`,可以使用`f1_score`函数来计算F1值: ```python from sklearn.metrics import f1_score f1 = f1_score(y_true, y_pred) ``` 其中,`y_true`和`y_pred`都是一维的数组或列表,分别表示真实标签和预测标签,数组的每个元素对应一个样本的标签。 同样地,可以使用`recall_score`和`precision_score`函数来计算recallprecision值。例如: ```python from sklearn.metrics import recall_score, precision_score recall = recall_score(y_true, y_pred) precision = precision_score(y_true, y_pred) ``` 需要注意的是,在计算这些指标时,需要根据具体的业务场景和问题来选择合适的标签作为正类和负类,以及设定阈值等参数。 ### 回答2: sklearn是一个基于Python的机器学习库,提供了丰富的功能来进行数据预处理、特征选择、模型训练以及模型评估等任务。在sklearn中,我们能够使用它内置的函数来计算F1分数、召回率和精确度。 F1分数是综合了精确度和召回率的评估指标。精确度是指模型预测为正例的样本中真正为正例的比例,而召回率是指所有真实正例样本中被模型预测正确的比例。计算F1分数的目的是为了综合考虑精确度和召回率,以便更全面地评估模型的性能。 在sklearn中,我们可以使用`sklearn.metrics`模块中的`precision_recall_fscore_support`函数来计算F1分数、召回率和精确度。假设我们已经有真实标签y_true和模型预测的标签y_pred,我们可以按以下方式计算它们的F1分数、召回率和精确度: ```python from sklearn.metrics import precision_recall_fscore_support precision, recall, f1, _ = precision_recall_fscore_support(y_true, y_pred, average='binary') ``` 其中,`y_true`是真实的标签,`y_pred`是模型预测的标签。`average`参数用于指定如何计算多分类问题的F1分数、召回率和精确度,例如设置为'binary'表示只计算二分类问题的评估指标。 最后,我们可以通过打印上述变量来查看计算得到的F1分数、召回率和精确度: ```python print("F1 Score:", f1) print("Recall:", recall) print("Precision:", precision) ``` 上述代码将会输出F1分数、召回率和精确度的值。这样,我们就可以使用sklearn计算F1分数、召回率和精确度来评估我们的模型了。 ### 回答3: 在Scikit-Learn中,我们可以使用分类模型的评估函数来计算F1、召回率和精确度。 F1分数是用于衡量分类模型性能的指标,综合考虑了召回率和精确度。召回率是指被正确分类的正样本数量与所有实际正样本数量的比例,而精确度是指被正确分类的正样本数量与所有被模型判定为正样本的样本数量的比例。F1分数是召回率和精确度的调和平均数,用于平衡这两个指标。 在Scikit-Learn中,我们可以使用以下方法计算F1分数、召回率和精确度: - 使用模型的predict方法预测目标变量,并将预测结果与实际目标变量进行比较。 - 使用classification_report函数来计算F1分数、召回率和精确度。这个函数会根据实际目标变量和预测结果生成一个分类报告,其中包含了各个类别的F1分数、召回率和精确度。 - 使用f1_scorerecall_scoreprecision_score函数分别计算某个类别的F1分数、召回率和精确度。这些函数可以接受实际目标变量和预测结果作为参数,并返回相应的评估指标。 下面是一个简单的示例代码,演示如何使用Scikit-Learn计算F1分数、召回率和精确度: ```python from sklearn.metrics import classification_report, f1_score, recall_score, precision_score from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # 生成一个二分类数据集 X, y = make_classification(n_samples=100, n_features=10, random_state=42) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练逻辑回归模型 model = LogisticRegression() model.fit(X_train, y_train) # 使用模型进行预测 y_pred = model.predict(X_test) # 计算F1分数、召回率和精确度 f1 = f1_score(y_test, y_pred) recall = recall_score(y_test, y_pred) precision = precision_score(y_test, y_pred) # 打印结果 print("F1 Score:", f1) print("Recall:", recall) print("Precision:", precision) # 生成分类报告 report = classification_report(y_test, y_pred) print(report) ``` 上述代码中,我们首先使用make_classification函数生成了一个二分类数据集。然后,我们将数据集分为训练集和测试集,并训练了一个逻辑回归模型。接着,我们使用模型进行预测,并计算F1分数、召回率和精确度。最后,我们打印了这些评估指标的值,并生成了一个分类报告。 通过上述方法,我们可以方便地计算F1分数、召回率和精确度,并评估分类模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值