剑指offer——连续子数组的最大和(42题)

题目:输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。

此题同时也是leetcode的原题。此处用两种方法解答。方法一,叫不出名字,但只需一次遍历,看代码很好理解。方法二,利用动态规划,dp[i]中存储以第i位置结尾的子序列的最大和。然后最后再求dp中的最大值。方法二的求解复杂度可能会稍高些,但不失为一种方法。

注意:以下代码均没有考虑特殊值输入的条件。如果需要,其思想是,应该设置一个全局变量,一旦检测出输入数组错误时,需要修改全局变量后才返回函数(这一步骤省略了,不好意思)。

方法一代码:

int maxSumOfSubarray1(vector<int>& nums) {
	int curSum = 0, ret = (int)0x80000000;
	for (int i = 0; i < nums.size(); ++i) {
		curSum += nums[i];
		ret = (curSum > ret ? curSum : ret);//这一步隐含:子序列的最后一位数字绝不可能是负值
		if (curSum < 0)
			curSum = 0;
	}
	return ret;
}

方法二:

//利用动态规划思想
/*
 f(i)表示以第i个数字结尾的子数组的最大和
 当i=0或者f(i-1)<=0, f(i)=nums[i]  当f(i-1)<=0时,f(i)即为第i+1个数字本身
 当f(i-1)>0,f(i)=f(i-1)+nums[i]   当f(i-1)>0时,f(i)即为以第i-1个数字结尾的子数组中所有数字的和与第i个数字累加所得结果
*/

代码如下:

int maxSumOfSubarray2(vector<int>& nums) {
	vector<int> dp(nums.size(), 0);
	dp[0] = nums[0];
	for (int i = 1; i < nums.size(); ++i) {
		if (dp[i - 1] <= 0)
			dp[i] = nums[i];
		else
			dp[i] = dp[i - 1] + nums[i];
	}
	vector<int>::iterator it = max_element(dp.begin(), dp.end());
	return *it;
}

验证代码:

#include<iostream>
#include<vector>
#include<algorithm>

using namespace std;


int main() {
	vector<int> nums = { 1,-2,3,10,-4,7,2,-5 };
	int ret1,ret2;
	ret1 = maxSumOfSubarray1(nums);
	ret2 = maxSumOfSubarray2(nums);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值