题目:输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。
此题同时也是leetcode的原题。此处用两种方法解答。方法一,叫不出名字,但只需一次遍历,看代码很好理解。方法二,利用动态规划,dp[i]中存储以第i位置结尾的子序列的最大和。然后最后再求dp中的最大值。方法二的求解复杂度可能会稍高些,但不失为一种方法。
注意:以下代码均没有考虑特殊值输入的条件。如果需要,其思想是,应该设置一个全局变量,一旦检测出输入数组错误时,需要修改全局变量后才返回函数(这一步骤省略了,不好意思)。
方法一代码:
int maxSumOfSubarray1(vector<int>& nums) {
int curSum = 0, ret = (int)0x80000000;
for (int i = 0; i < nums.size(); ++i) {
curSum += nums[i];
ret = (curSum > ret ? curSum : ret);//这一步隐含:子序列的最后一位数字绝不可能是负值
if (curSum < 0)
curSum = 0;
}
return ret;
}
方法二:
//利用动态规划思想
/*
f(i)表示以第i个数字结尾的子数组的最大和
当i=0或者f(i-1)<=0, f(i)=nums[i] 当f(i-1)<=0时,f(i)即为第i+1个数字本身
当f(i-1)>0,f(i)=f(i-1)+nums[i] 当f(i-1)>0时,f(i)即为以第i-1个数字结尾的子数组中所有数字的和与第i个数字累加所得结果
*/
代码如下:
int maxSumOfSubarray2(vector<int>& nums) {
vector<int> dp(nums.size(), 0);
dp[0] = nums[0];
for (int i = 1; i < nums.size(); ++i) {
if (dp[i - 1] <= 0)
dp[i] = nums[i];
else
dp[i] = dp[i - 1] + nums[i];
}
vector<int>::iterator it = max_element(dp.begin(), dp.end());
return *it;
}
验证代码:
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main() {
vector<int> nums = { 1,-2,3,10,-4,7,2,-5 };
int ret1,ret2;
ret1 = maxSumOfSubarray1(nums);
ret2 = maxSumOfSubarray2(nums);
return 0;
}