Pytorch(YOLO)GPU版环境配置

近期想学习YOLO V8,需要用pytorch配置GPU加速,网上找到很多教程都是CPU版本的,零零散散整理了各位大佬的教程,最终结合自己的实践,总结出一个成功率高一点的教程。

1. CUDA安装

1.1 版本确认

  1. Win+R,输入CMD,回车确认。
    CMD
  2. 打开终端,使用nvidia-smi指令,检查自己的CUDA版本、驱动版本,如图我的是cuda12.4,驱动版本552.22。
    在这里插入图片描述
    在这里插入图片描述
  3. 如果想查看cuda的详细版本,可以在桌面右键,找到NVIDIA控制面板(Win11先点“显示更多选项”)。
    在这里插入图片描述
  4. 点击进入,找到左下角系统信息,点击进入。
    在这里插入图片描述
  5. 在新打开的窗口中点击“组件”,在“NVCUDA64.dll”后面就可以看到详细的CUDA版本(我这里是12.4.131)
    在这里插入图片描述

1.2 CUDA下载

  1. 登录Nvidia开发者官网,下载cudatoolkit,官网一般为最新版,点击图示位置可以下载旧版本CUDA。

    https://developer.nvidia.com/cuda-downloads
    在这里插入图片描述

  2. 根据自己的版本选择合适的cudatoolkit,我这里选择的是cuda==12.4.1。
    在这里插入图片描述

  3. 进入后根据自己的系统选择对应的cudatoolkit,选择好后点击Download。
    在这里插入图片描述

1.3 安装CUDA

  1. 下载好的安装包如图,双击,同意管理员权限,进入安装界面。
    在这里插入图片描述

  2. 进入安装界面后,一直下一步,能同意就同意,直到安装选项的时候,选择精简。
    在这里插入图片描述

  3. 如果途中出现了Microsoft Visual Studio进程冲突,可以关掉VS后,重启电脑即可。

  4. 安装完成后,需要确认是否安装成功,首先,再次进入CMD,输入指令

nvcc --version

  1. 如果显示出了CUDA版本,再确认下一步。
    在这里插入图片描述

  2. 右键“此电脑”,点击“属性”,再进入“高级系统设置”。
    在这里插入图片描述

  3. 点击环境变量,在环境变量中查看是否存在CUDA_PATH和CUDA_PATH_VXX_X(XX_X代表你所安装的CUDA版本),存在证明安装成功。
    在这里插入图片描述
    在这里插入图片描述

2. cuDNN安装

2.1 cuDNN下载

开始下载前,需要注册一个Nvidia账号并登录,注册教程这里不再赘述

  1. 进入如下网址,并点击“Download cuDNN Library”:
    https://developer.nvidia.com/cudnn
    在这里插入图片描述

  2. 由于我这里不是最新版本的CUDA,所以选择下载之前的旧版本。
    在这里插入图片描述

  3. 根据结尾的for CUDA xx.x,选择合适的版本。
    在这里插入图片描述

  4. 点击后,展开如下页面,根据自己的系统选择合适的版本。选择后自动开始下载。
    在这里插入图片描述

  5. 下载后如图所示是一个压缩包。
    在这里插入图片描述

2.2 cuDNN安装

  1. 打开下载好的压缩包,复制压缩包内如下几个文件夹。
    在这里插入图片描述
  2. 找到cuda的安装位置,如果你之前安装选择默认位置的话,应该跟我一样在C:\Program Files\NVIDIA GPU Computing Toolkit下。
    在这里插入图片描述
  3. 继续打开对应版本的文件夹,打开后如图,将刚才复制的三个文件夹粘贴在这里即可。
    在这里插入图片描述
  4. 验证是否安装成功,在上图位置,双击进入extras\demo_suite,在该文件夹处右键,选择“在终端中打开”。
    在这里插入图片描述
  5. 在新打开的终端中,输入 .\bandwidthTest.exe,回车后显示Result=PASS,证明安装成功。
    在这里插入图片描述

3. 安装Pytorch

3.1 使用pip安装Pytorch

  1. 打开如下网址,点击Get Started:
    https://pytorch.org/index.html
    在这里插入图片描述

  2. 按照自己的配置与Cuda版本(向下兼容),网页会自动生成安装指令,在自己的对应环境中运行即可(确保终端已安装最新版pip)
    在这里插入图片描述

  3. 复制到自己的终端,运行即可。
    在这里插入图片描述

  4. 如果下载慢或者搜不到,可以更换pip源或者conda(使用anaconda的情况下)源,换源的教程可以参照其他大佬。

3.2 验证Pytorch

  1. 直接写个小程序一起验证下环境是否可用:
import torch

if torch.cuda.is_available():
    print("CUDA is available")
    device = torch.device("cuda:0")
else:
    print("CUDA is not available")
    device = torch.device("cpu")
  1. 如果控制台显示CUDA is available,恭喜环境配置成功。
  2. 配置成功后,在模型推理(如YOLO V8)时,就可以设置推理容器为GPU,具体可以尝试如下代码(须安装ultralytics,直接pip install ultralytics即可):
import torch
from ultralytics import YOLO

model = YOLO('yolov8n.pt')
model('YOUR_DIR', show=True, device = 0) # 需要将YOUR_DIR换为你自己数据集(MP4或者图片等)的位置
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值