Yolov11 pytorch环境搭建及测试全过程!

Yolov11 pytorch环境搭建及测试全过程

注:pytorch环境搭建适用于Yolo所有系列

一、Nvidia驱动更新

win+R打开搜索栏,输入cmd。
之后在控制台输入nvidia-smi即可查看CUDA Version,此处版本为cuda最高支持版本,安装cuda时不大于该版本即可。
若该版本较低,则去英伟达官网进行驱动更新
在这里插入图片描述
网址:NVIDIA GeForce 驱动程序 - N 卡驱动 | NVIDIA进入该官网后,自行搜索对应的驱动进行安装。
注:笔记本用户搜索安装时需下载后标有laptop的驱动程序。

驱动程序安装之后进行Anaconda安装

二、Anaconda安装

再进行驱动更新安装之后,进行Anaconda安装,该软件为环境管理软件,方便把运行yolov11所需的环境进行增添删改等操作若需了解更多,可查博客:anaconda的安装和使用(管理python环境看这一篇就够了)-CSDN博客

打开该网站Download Anaconda Distribution | Anaconda,之后填入相应的Email Address地址,然后进行相应的系统以及版本选择,若需使用更低版本的python或者Anaconda,在该网站Index of /中选取下载即可。下载安装时注意选取相应的安装地址,不一定非得装在C盘,安装过程略。

安装完成后,在开始界面(按win键或者点击左下角)即可看见该选项

在这里插入图片描述

点击该选项:Anaconda Prompt(Anaconda)即可。

三、Pytorch安装

在进入之后,可以看到这样界面,在该界面进行操作。!!但是并非在该base环境下进行操作。

在这里插入图片描述

输入 conda env list即可查看电脑上所拥有的环境,除base外,其他环境需自行安装。

在这里插入图片描述

在这里,我们开阔一个新的虚拟环境:abc(你也可以取其他ID,任意取非中文即可)
创建虚拟环境指令:conda create -n abc python=3.12
其中,python版本以及虚拟环境名称都可以更改,根据自己喜好以及需求选择即可。输出该指令之后:

在这里插入图片描述

输入英文 y 即可进行下载安装。
在这里插入图片描述

下载安装之后,在该界面下继续输入conda env list 查看创建的虚拟环境abc:
在这里插入图片描述

之后,输入 conda activate abc 切入到该虚拟环境中:在这里插入图片描述

在该虚拟环境下,进行yolov11其需要的相关包的安装操作,下面需安装pytorch架构(Gpu版本)

(1)安装Pytorch

在安装Pytorch之前,因为Pytorch其相关服务器在国外,下载环境包较慢,我们可以给其换为清华源or其他源:
下面以清华源为例:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

之后打开pytorch官网:PyTorch
在这里插入图片描述

在一开始我们可以看见我们显卡驱动最高支持cuda版本为12.6,因此在这里我们可以选择其中任意版本下载(若驱动cuda版本较低,则选择不大于驱动版本的驱动即可。)
!!此处Package需选择Conda,其默认为pip安装。

这里以12.4为例:
在这里插入图片描述

复制该红框中的指令,之后切到控制台abc虚拟环境下输入:
在这里插入图片描述

在输入后,回车,等待其加载结束·······(若结果出现错误,则把-c pytorch -c nvidia这一串去掉重试,别忘了切换虚拟环境abc)
在加载结束后,此处会询问y/n?输入y即可

在这里插入图片描述

输入y之后等待其安装完成之后即可,完成后显示done即pytorch环境安装成功。

下一步即可安装cuda+cudnn(这步可跳过,因为在pytorch中已经安装上相应版本的cuda)但若你在使用过程中单独需要用到,可进行该操作。

四、cuda+cudnn安装

声明:这步可以跳过,安装好的pytorch环境中有携带cuda版本的torch,无需再进行这步操作。
而其中CUDA Toolkit 与 torch.version.cuda 的关系可参考该博客详解Windows 11 上 CUDA 与 PyTorch 版本的兼容性-CSDN博客

下面进行实操步骤:

(1)安装cuda

首先,下载CUDA。官网下载地址:CUDA Toolkit Archive | NVIDIA Developer
根据你cuda的最高版本选择你所需的CUDA Toolkit进行下载,这里以CUDA Toolkit 12.4.0版本为例:

在这里插入图片描述

选择你所对应的操作系统以及版本,这里的local意为本地安装,选择该项即可,之后进行下载。

在这里插入图片描述

下载完成后,安装地址默认即可,然后安装中的选项,选择自定义安装,将其中的CUDA打勾即可,其他选项可不安装。

在这里插入图片描述

之后,安装结束后,win+R打开控制台,输入nvcc -V即可查看cuda是否安装成功,若出现该提示,则证明安装成功(我这里安装的是12.1)

在这里插入图片描述

(2)安装cudnn

cudnn版本需与cuda版本对应,其官网为cuDNN Archive | NVIDIA Developer
在此处选择与你所安装CUDA版本对应的cuDNN,例如安装为CUDA12.4,则选择第一个即可。

在这里插入图片描述

点开第一个后,选择你对应系统的选项,例如Local installer for windows进行下载,下载完成后,解压缩。
在这里插入图片描述

解压缩后,获得以下文件:

在这里插入图片描述

将该文件复制至你cuda所安装的路径,若无更改,默认路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1
复制粘贴至该路径即可,然后进行环境变量更改。

(3)环境变量

右键此电脑,属性。

在这里插入图片描述

选择高级系统设置:

在这里插入图片描述

之后点击环境变量。

在这里插入图片描述

通常情况下,cuda安装好后,在系统变量中会出现CUDA_PATH路径,若无点击下方新建即可,名称即为CUDA_PATH,路径即为CUDA所在路径。

在这里插入图片描述

而在user的用户变量的Path中,并不会出现相应路径,点击新建,添加如图所示环境变量即可。

在这里插入图片描述

在所有环境变量设置好后,回到安装CUDA的目录,找到extras文件夹中的demo_suite。在上方输入cmd打开该文件夹。
在这里插入图片描述

之后在里面输入deviceQuery.exe,若显示pass则安装成功。
在这里插入图片描述

下一步,输入bandwidthTest.exe,若显示pass则安装成功。
在这里插入图片描述

至此,若没出现什么问题,则cuda与cudnn安装成功。

五、Pycharm环境应用

在搭建好上述环境后,我们可以在pycharm or vs中应用,这里选择Pycharm举例。

(1)安装Pycharm

进入该官网,下载PycharmPyCharm: the Python IDE for data science and web development

下载完成后,安装时将其选项全部勾上进行安装,安装完成后,汉化过程可自行百度。

(2)环境应用

方法一:
点击设置

在这里插入图片描述

选择该项目下的Python解释器,点击右侧的添加解释器。点击选项:添加本地解释器。

在这里插入图片描述

选择右侧的Conda环境,然后点击使用现有环境,在现有环境中点击搭建好的环境:abc(or 你命名的id)

在这里插入图片描述

然后点击应用即可。这样在Pycharm中就将搭建好的pytorch应用了。

(3)环境测试

在Pycharm中创建一个项目,可命名为环境测试,将其脚本中的代码删除,然后输入以下代码:

import torch
print(torch.cuda.is_available())
print(torch.backends.cudnn.is_available())
print(torch.backends.cudnn.version())
print(torch.__version__)

输入完成后,注意右下角是否为你所搭建的虚拟环境名称
在这里插入图片描述

之后运行该脚本。
若输出:
在这里插入图片描述

类似于该输出,则证明环境搭建成功!

六、Yolov11初步运行

(1)下载Yolov11代码:

Yolov11官网:GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

在该官网中,点击Download ZIP,下载该代码压缩文件,之后进行解压,将其用Pycharm打开。
在这里插入图片描述

(2)Yolov11对应的需求模块安装

打开解压缩后的代码之后,右下角选择对应环境,可以看到该项目的README文本,里面详细介绍了怎么下载其所需的requirements文件,以及相应的Python和Pytorch版本要求。相较于之前的Yolo系列不同的是,Yolov11并无实质的requirements文本

在这里插入图片描述
若需要安装其对应的模块的话,只需在控制台输入:
pip install ultralytics

之后将进行相应的模块需求安装,安装完成后会显示successfully··········

(3)简单运行测试

1.前提准备

在安装好环境后,可以进行简单的测试来看一下是否可以训练以及预测

!!!注:在进行测试前,需要将其中的num_workers==nw改为 num_workers=0
原因:num_workers是用来指定开多进程的数量,在Linux中可以用而在windows中不可用,会报RuntimeError: DataLoader worker (pid(s) ***, ***, ***, ***) exited unexpectedly错误。

操作:点击右上角搜索,搜索num_workers

在这里插入图片描述

点击num_workers=nw选项

在这里插入图片描述

在此处,将该参数改为0即可。

在这里插入图片描述

2.测试运行

测试运行时,为了方便快捷选择的数据集为coco8,该数据集运行下述代码后会自行安装

方式一:CLI方式
三种任选其一在终端运行即可。

yolo detect train data=coco8.yaml model=yolo11n.yaml epochs=100 imgsz=640
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640
yolo detect train data=coco8.yaml model=yolo11n.yaml pretrained=yolo11n.pt epochs=100 imgsz=640

方式二:python脚本
该方式,在项目下新建一个python脚本将代码复制进去即可运行。

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.yaml")  # build a new model from YAML
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolo11n.yaml").load("yolo11n.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)

若环境及数据集和预训练模型可以下载的话,则该训练也不会有问题。
若训练时想要调整一些参数可去Train - Ultralytics YOLO Docs该网站进行查询

运行结束后在项目目录下会出现相应的训练结果。
在这里插入图片描述

若需训练自己的数据集,可自行百度,后续也会出相应的训练自己数据集的教程,大家可先行关注!谢谢!!

若大家有什么问题可评论区留言,看到就会回复。

### 使用YOLOv11测试集进行模型评估 对于使用YOLOv11测试集来评估训练完成的模型,过程涉及几个重要环节。首先,在准备阶段,需确保测试数据按照框架的要求进行了预处理,这通常包括但不限于图像尺寸标准化和像素值归一化等操作[^3]。 #### 准备环境与加载模型 为了顺利执行评估流程,应先安装必要的依赖库并导入所需模块。接着,加载之前保存的最佳权重文件到YOLOv11实例中: ```python from ultralytics import YOLO model = YOLO('path_to_best_weights.pt') # 加载最佳权重路径 ``` #### 配置评估参数 配置用于评估的关键参数同样至关重要。这些参数可能依据具体应用场景而有所不同,但一般会涉及到设定IoU阈值、分类分数阈值以及其他影响评价标准的因素。通过调整`conf`, `iou`, 和`task`等选项可以定制适合特定任务需求的评估策略[^1]。 #### 开始评估 一旦完成了前期准备工作,则可以通过调用`.val()`方法启动针对测试集的数据评估工作流。此过程中,程序将会遍历整个测试集合,并计算各类统计量如精度(Precision),召回率(Recall), F1-Score, mAP (mean Average Precision) 等作为衡量模型表现的重要指标[^2]: ```python results = model.val(data='test.yaml', conf=0.001, iou=0.65, task='detect') print(results) ``` 这里使用的`data`参数指定了描述测试集结构及其标注信息的YAML文件的位置;`conf`定义了预测框保留所需的最小置信度得分;`iou`设定了两个边界框之间交并比(IoU) 的最低接受限度;最后,`task`表明当前正在执行的是目标检测任务。 #### 结果分析 获得的结果对象包含了丰富的性能评测详情,允许进一步深入探究模型的优势领域及潜在不足之处。通过对各项统计数据的研究可以帮助识别出哪些类别容易被误判或是漏检等问题所在,从而指导后续优化方向的选择。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿吉niceeee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值