1045 Favorite Color Stripe (30分)

是一个最长不下降子序列的问题。关于最长不下降子序列的算法推导见算法笔记432页。简要的说一下思想就是使i从0-n-1遍历整个所给序列a,计算以i位置为最终子序列尾元素时的最大序列长度。dp[i]记录以a[i]为尾元素时的最长子序列长度。使j遍历0-i,如果以j为尾元素的子序列加上i位置的元素能保持子序列不下降且长度比原先的子序列更长,就更新记录的dp[i]。初始化dp[i]=1,即将每个单独的元素都看作是一个子序列。
前处理是读入favorite stripe,定义map以便在读入given stripe时直接过滤掉不在map所包含的数字中的数字,并将数字转为对应的序列号大小存储。(虽然题目没有明确说明favorite stripe中的数字不重复,但是测试用例是都不重复的,有重复的话就会更复杂一点,可以设定一个iterator在当前iterator到end的范围中查找,实现对序列号的大小对比。)

今日小废话:ubuntu下codeblocks不知道为啥老闪退,敲着敲着就关了还不带保存

#include <stdio.h>
#include <algorithm>
#include <vector>
#include <map>
using namespace std;

vector<int> favorv,givenv;
map<int,int> favmp;

int main(){
    int n,m,k;
    scanf("%d\n%d",&n,&m);

    for(int i=0;i<m;i++){
        int fav;
        scanf("%d",&fav);
        favorv.push_back(fav);
    }
    scanf("%d",&k);
    for(int i=0;i<favorv.size();i++){
        favmp[favorv[i]]=i;
    }

    for(int i=0;i<k;i++){
        int given;
        scanf("%d",&given);
        if(favmp.find(given)!=favmp.end()){
            givenv.push_back(favmp[given]);
        }
    }
    int maxsum=-1;
    int dp[givenv.size()];
    for(int i=0;i<givenv.size();i++){
        dp[i]=1;
        for(int j=0;j<i;j++){
            if(givenv[i]>=givenv[j] && dp[j]+1>dp[i]){
                dp[i]=dp[j]+1;
            }
        }
        maxsum=max(dp[i],maxsum);
    }
    
    printf("%d",maxsum);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值