是一个最长不下降子序列的问题。关于最长不下降子序列的算法推导见算法笔记432页。简要的说一下思想就是使i从0-n-1遍历整个所给序列a,计算以i位置为最终子序列尾元素时的最大序列长度。dp[i]记录以a[i]为尾元素时的最长子序列长度。使j遍历0-i,如果以j为尾元素的子序列加上i位置的元素能保持子序列不下降且长度比原先的子序列更长,就更新记录的dp[i]。初始化dp[i]=1,即将每个单独的元素都看作是一个子序列。
前处理是读入favorite stripe,定义map以便在读入given stripe时直接过滤掉不在map所包含的数字中的数字,并将数字转为对应的序列号大小存储。(虽然题目没有明确说明favorite stripe中的数字不重复,但是测试用例是都不重复的,有重复的话就会更复杂一点,可以设定一个iterator在当前iterator到end的范围中查找,实现对序列号的大小对比。)
今日小废话:ubuntu下codeblocks不知道为啥老闪退,敲着敲着就关了还不带保存
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <map>
using namespace std;
vector<int> favorv,givenv;
map<int,int> favmp;
int main(){
int n,m,k;
scanf("%d\n%d",&n,&m);
for(int i=0;i<m;i++){
int fav;
scanf("%d",&fav);
favorv.push_back(fav);
}
scanf("%d",&k);
for(int i=0;i<favorv.size();i++){
favmp[favorv[i]]=i;
}
for(int i=0;i<k;i++){
int given;
scanf("%d",&given);
if(favmp.find(given)!=favmp.end()){
givenv.push_back(favmp[given]);
}
}
int maxsum=-1;
int dp[givenv.size()];
for(int i=0;i<givenv.size();i++){
dp[i]=1;
for(int j=0;j<i;j++){
if(givenv[i]>=givenv[j] && dp[j]+1>dp[i]){
dp[i]=dp[j]+1;
}
}
maxsum=max(dp[i],maxsum);
}
printf("%d",maxsum);
}