hashlib模块
加密:将明文数据通过一系列算法变成密文数据(目的就是为了数据的安全)
加密算法:md系列 sha系列 base系列 hmac系列
#基本使用
import hashlib
# 1.先确定算法类型(md5普遍使用)
md5 = hashlib.md5()
# 2.将明文数据传递给md5算法(update只能接受bytes类型数据)
# md5.update('123'.encode('utf8'))
md5.update(b'123')
# 3.获取加密之后的密文数据(没有规则的一串随机字符串)
res = md5.hexdigest()
print(res)
"""
1.加密之后的密文数据是没有办法反解密成明文数据的
市面上所谓的破解 其实就是提前算出一系列明文对应的密文
之后比对密文再获取明文
"""
详细操作
1.先确定算法类型(md5普遍使用)
# md5 = hashlib.md5()
# # 2.将明文数据传递给md5算法(update只能接受bytes类型数据)
# # md5.update('123'.encode('utf8'))
# md5.update(b'123')
# # 3.获取加密之后的密文数据(没有规则的一串随机字符串)
# res = md5.hexdigest()
# print(res)
2.明文数据只要是相同的 那么无论如何传递加密结果肯定是一样的
3.密文数据越长表示内部对应的算法越复杂 越难被正向破解,但是越复杂的算法所需要消耗的资源也就越多 密文越长基于网络发送需要占据的数据也就越大,具体使用什么算法取决于项目的要求 一般情况下md5足够了。
4.涉及到用户密码存储 其实都是密文 只要用户自己知道明文是什么
5.文件不是很大的情况下 可以将所有文件内部全部加密处理,针对大文件可以使用切片读取的方式。
logging日志模块
日志有五个等级(从上往下重要程度不一样)
logging.debug('debug级别') # 10
logging.info('info级别') # 20
logging.warning('warning级别') # 30
logging.error('error级别') # 40
logging.critical('critical级别') # 50
'''默认记录的级别在30及以上'''
# 简单使用
import logging
file_handler = logging.FileHandler(filename='x1.log', mode='a', encoding='utf-8',)
logging.basicConfig(
format='%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S %p',
handlers=[file_handler,],
level=logging.ERROR
)
logging.error('日志模块很好学 不要自己吓自己')
"""
1.如何控制日志输入的位置
想在文件和终端中同时打印
2.不同位置如何做到不同的日志格式
文件详细一些 终端简单一些
"""
日志模块详细介绍
1.logger对象:负责产生日志
2.filter对象:负责过滤日志(直接忽略)
3.handler对象:负责日志产生的位置
4.formatter对象:负责日志的格式
5.绑定handler对象
6.绑定formatter对象
hd1.setFormatter(fm1)
hd2.setFormatter(fm2)
hd3.setFormatter(fm1)
7.设置日志等级
logger.setLevel(30)
8.记录日志
logger.debug('写了半天 好累啊 好热啊')
配置字典
import logging
import logging.config
standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
'[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字
simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'
logfile_path = 'a3.log'
# log配置字典
LOGGING_DIC = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {
'standard': {
'format': standard_format
},
'simple': {
'format': simple_format
},
},
'filters': {}, # 过滤日志
'handlers': {
#打印到终端的日志
'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler', # 打印到屏幕
'formatter': 'simple'
},
#打印到文件的日志,收集info及以上的日志
'default': {
'level': 'DEBUG',
'class': 'logging.handlers.RotatingFileHandler', # 保存到文件
'formatter': 'standard',
'filename': logfile_path, # 日志文件
'maxBytes': 1024*1024*5, # 日志大小 5M
'backupCount': 5,
'encoding': 'utf-8', # 日志文件的编码,再也不用担心中文log乱码了
},
},
'loggers': {
#logging.getLogger(__name__)拿到的logger配置 空字符串作为键 能够兼容所有的日志
'': {
'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
'level': 'DEBUG',
'propagate': True, # 向上(更高level的logger)传递
}, # 当键不存在的情况下 (key设为空字符串)默认都会使用该k:v配置
},
}
# 使用配置字典
logging.config.dictConfig(LOGGING_DIC) # 自动加载字典中的配置
logger1 = logging.getLogger('xxx')
logger1.debug('好好的 不要浮躁 努力就有收获')