机器学习中的算子

1.拉普拉斯算子核的推导:

  拉普拉斯算子广泛应用在视频处理的增强和锐化过程当中,根据百度百科中的提法,拉普拉斯算子(Laplace Operator)是n维欧 几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f).

  如果f是二阶可微的实函数,则f的拉普拉斯算子定义为

在这里插入图片描述

f的拉普拉斯算子也是笛卡尔坐标系𝑥𝑖中的所有非混合二阶偏导数:

在这里插入图片描述

对于图像等二维空间上,是针对每个自变量的二阶非混合偏导数之和.

在这里插入图片描述

在机器学习中,使用数字电路进行图像处理,需要计算上述公式的离散版本,推导如下:

设空间二元函数

 𝑧=𝑓(𝑥,𝑦)

则首先算出对x的一阶偏导数离散化形式:

同理

然后,在一阶导数的基础上,进一步对同元求二阶导数:

继续对x求导:

继续对y求导:

所以, laplace算子为:

化作卷积核的形式:

QED!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值