复球面也叫黎曼球面,它是一种复数表示方法,使球面上的每个点唯一的对应复平面上的一个复数.两者之间构成一一映射,如下图所示,根据初等三角相似的性质,可以推导出复球面上的坐标点和对应复平面上坐标点之间的变换关系,本文试图推到这种关系.
SpRsQ坐标为
设其对应的复平面上的点Q坐标为
那么,根据相似三角形比例公式:
另外
所以
所以
所以:
所以:
整理得:
所以:
显然只有满足要求.
所以,复平面上一点对应的复球面坐标
为:
关联公式得到了,再看一下有什么规律
换一下形式:
其中
r是复平面上的辐角
所以:
其图形是:
对应的复球面:
可以看到,以复球面上平行于复平面的大圆对应的复平面大圆半径为界(也就是r=2),z直分别>1和<1
应该有更好的数形结合的求解方法,不过目前还没有想到.
把数轴掰弯
用同样的思路,可以将数轴掰弯,下图中,圆上的任意一个点(除了最高点)之外,都和数轴上的点一一对应。 并且,负无穷和正无穷在这种情况下重合在一个点,这个点对应到两个无穷大。这种相似性叫做同胚,数轴同胚为一个圆后,唯独缺少了顶点,在顶点这里,正无穷和负无穷合二为一。