Faster RCNN中的交替训练

1.stage1_rpn_train.pt

      单独训练RPN 网络,训练的模型用ImageNet的模型来初始化,采用end to end的方式来调整参数

      backbone+rpn+fast rcnn——>backbone1+rpn1+fast rcnnbackbone rpn参数更新

 2.stage1_fast_rcnn_train.pt

      单独训练检测网络Fast Rcnn,训练用的proposals来自第一步的RPN net,模型初始化采用ImageNet模型

       backbone+rpn1+fast rcnn——>backbone2+rpn1+fast rcnn1backbone fast rcnn参数更新

 3.stage2_rpn_train.pt

     用第二步Fast Rcnn的参数来初始化RPN模型,但是训练的时候固定卷积层,只调整属于RPN的参数

        backbone2+rpn1+fast rcnn1——>backbone2+rpn2+fast rcnn1,rpn参数更新

 4.stage2_fast_rcnn_train.pt

     保持共享的卷积层固定,用第三步调整后的RPN输出的proposals作为输入,微调Fast Rcnn剩下的参数

        backbone2+rpn2+fast rcnn1——>backbone2+rpn2+fast rcnn2,fast rcnn参数更新

参考:https://blog.csdn.net/dudu815110/article/details/79088258

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值