一道弹性碰撞的物理题,结果为什么会出现π?

文章通过一道有趣的物理题展示了碰撞次数与椭圆和圆周角的关系。通过能量守恒和动量守恒原理,将问题转化为数学问题,当质量比为100的幂时,碰撞次数呈现圆周角规律。这是一本结合数学思维和实际问题解决的科普书籍摘录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

e4a433d4ca034a504f87a34b8b78dec5.png

40b9dff5f1bcc0b47f6b5569014bcc7b.jpeg

来源 | 《你没想到的数学》

作者 | 王赟

1

第一次波折:争议与批评

有这样一道有趣的物理题,出现在“3Blue1Brown”“李永乐老师”等许多在线视频中。

如图1.1所示,光滑的地面上放着大小两个滑块,左边是墙。大滑块的质量是小滑块的n倍。给大滑块一个向左的初速度,两个滑块之间及小滑块与墙之间会发生多次碰撞。假设碰撞没有能量损失,问一共会发生多少次碰撞?

c2b3ee3f545b07f1bdf3259d115bad60.jpeg

图 1.1 两个小滑块

你可能觉得,这只是一道普通的物理题而已,没什么意思。先别着急下结论,我们来看看当23390ac9a718727e4f3434189d815c92.png取一些特殊值时,分别会发生的碰撞次数。

若两个滑块质量相等,则一共会发生3次碰撞;

若大滑块的质量是小滑块的1百倍,则一共会发生31次碰撞;

若大滑块的质量是小滑块的1万倍,则一共会发生314次碰撞;

若大滑块的质量是小滑块的1百万倍,则一共会发生3 141次碰撞;

若大滑块的质量是小滑块的1亿倍,则一共会发生31 415次碰撞……

是不是觉得有意思了?当两个滑块质量之比是100的幂时,碰撞次数是5dcee84157e22c8f959e1bf94827326f.png去掉小数点后的前若干位。在这么一道“方方正正”的物理题里,怎么会出现与圆有关的c7e3b671b5ef585823c96f92433ada78.png呢?

“3Blue1Brown”频道给出了一个提示:凡是出人意料地出现ba7a69faf2a46455aed00c2ebdbdf11a.png的题目,背后总是隐藏着一个圆。而这道物理题里的圆,隐藏在能量守恒方程式中:

01fbf7cff92d8e27d34569d7bf3f497d.png 常数        (1.1)

其中a154bfc6610b29dc4e9fc425c80c5978.png表示大小滑块的质量,0f9fefc3ed31dfd2234eabc4447a4f1c.png表示大小滑块的速度。我鼓励读者在继续看下去之前,先根据式(1.1)自己捣鼓捣鼓,看看能不能捣鼓出4d42202f01cb2c9d1225dab473376006.png来。

2

隐藏的椭圆

式(1.1)实际上表示了27af0683acb142505b0d06d1ecde4726.png空间中的一个椭圆。设大滑块的初速度为-1(负号代表向左),则能量守恒方程式可以化简为:

e5204569ed325c182f800f281177852b.png

这个方程式表示的椭圆如图1.2所示(图中取6d82262ae361741c698a13b71c035b04.png)。在运动过程中的任何时刻,两个滑块的速度都会落在椭圆上;两个滑块的初速度,对应着短轴的下端(图中12225c44128dca43acd2bb076087c53f.png点)。

fbc56f8cca7cd66b55a3a3846bf2b71c.jpeg

图 1.2 椭圆代表能量守恒

下面我们试着在椭圆中画出碰撞过程。第一次碰撞,是大滑块撞小滑块。碰撞前后,两个滑块的速度除了满足能量守恒以外,还要满足动量守恒,即:

14530c4b03213b8fe949b06961829d36.png 常数        (1.3)

式(1.3)在ad570e8f0ed15e36096b0bb16f759e5f.png空间中,代表一条斜率为6714868917a7b4e08baba83711762f5c.png的直线,这个例子中的斜率为a31d80f5bffeaeca68883fb362ff468c.png。如图1.3,过7769a9db99a76560d25208c91893e185.png点作一条斜率为86f739b5f2ea35be764ba3ce762b8c99.png的直线,它与椭圆的另一个交点e3a2589287a4b9f3d239344d234cc51b.png就代表了第一次碰撞后,两个滑块的速度。

92b74ad7d448bea00672318e6b8600d7.jpeg

图 1.3 倾斜直线代表两个滑块相撞时动量守恒

第二次碰撞,是小滑块撞墙。其结果很简单,就是小滑块的速度变为反向。如图1.4,过1958c0326f484c1db5cd664d95cf78c3.png点画一条与横轴平行的直线,这条直线与椭圆的交点40588970352ae03060dc8ec7118ebcdf.png就代表了第二次碰撞后两个滑块的速度。

66d6f8ef9cdec906ac3d0e7e86dc8640.jpeg

图 1.4 水平直线代表小滑块与墙碰撞

重复上述过程,直到60242a95e9f1304144a21ba6c45eae3b.png。此时,两个滑块都向右运动,但小滑块追不上大滑块了,于是不会再发生碰撞。在cc8d11e3b370ed870bfece967d163f19.png空间中,代表两个滑块最终速度的点一定会位于第一象限中直线e1d06742f2215b11f79f1d7501adc647.png上方(图中的黄色区域),这个例子中是图1.5中的0b9352f6b486b643d715108c66bad38c.png点。

a616a7d711c2f5503807bd1013d53dda.jpeg

图 1.5 ce8c701ec6e51014e70369560cef4463.png空间中的整个碰撞过程

3

隐藏的椭圆

可以注意到图1.5中弧2976469e51acefeb2dd090f3c63dcfa2.png671d4ba560b241fee25d1e29e36eb090.png61016aea42df74d1fe8a6cd758bb74a2.png57690d42a7db59d26d2e52906833b8f8.pngbb309390ab5f92a022e44125be6646e7.png所对的“椭圆周角”(角37b7ca90e93c7d663f7ee888ceb211a4.png0f43b3c2acbca7f40b1513f2c6865cb0.pngec53a18fbd63ffccbbc39cf54d8717bf.png2cd71c6fb10dc11ff16e84302f1abed4.png53130fd0b10e69625a2f8d9efd4e9479.png)都是相等的,等于2ae5c21035212702a2d013ad03676b78.png。弧f8e303ef4171da7d2650f31b8237e2a7.pngb6de4fa4f9313bf9a4f50361e4feddd0.png对称,也可以让它对应“椭圆周角”a24dff4d1ba283239bfe71ff659dfe5e.png,这个角也等于0f00f844baf9a8ce7ba06e32817fb83a.png。联想到圆中有“等弧所对圆周角相等”的性质,而椭圆中没有,于是想到如果把椭圆“捏”成圆,会不会有意外发现?

将图1.5整体在横向上压缩到原来的2c8b01ac93819ff382450a28d4c363cc.png倍,则椭圆就变成了单位圆,如图1.6所示。

a420a7169c465c3f58b781bd558639eb.jpeg

图 1.6 把椭圆“捏”成单位圆

这样一压缩,线段65216421ae5c404c8266dec3c860d70c.pngcf218b63a822c2b2bf97ea8193da998a.png2769976b2da7a08f1a28393f499f00ab.png的斜率就都从3119760d8e9d24a6cc920d1c8292c445.png变成了ebb0023de8e88de6d09ad15e852034d5.png,各段圆弧(除了9d1f3f5198d14f902dc290c4d4e8dcb0.png)所对的圆周角也都变成了fb724d6af5f13941757a1ae085943116.png。现在可以利用“等弧所对圆周角相等”了——这些圆弧的长度,都等于这个圆周角的2倍,即9ebe3f6ef91c9186a2ba9123cfd10a27.png

滑块的碰撞,可以看成从单位圆上不断切下一段长度为5df7a8af8e0f61a1af491b7efa341f2a.png的圆弧,直到剩余部分长度不超过a91ad4eb572b1cc26a03697aab7a1cd6.png为止。而整个单位圆的周长是84046df9fbcb147d781fb10d691f7563.png(注意b79ef0ab90fd617793c74e567e6ca935.png出现了!),于是可以得到总的碰撞次数:

69a17fa1a8d289174c8fe08eae2f5503.png

这里的取整符号看起来较复杂,实际想要达到的效果是,一般情况(不能整除时)向下取整,特殊情况(能整除时)取商再减一。请读者自行验证。

由式(1.4)可以算出,当两个滑块质量相等时,f86f1f928b7e83c8fa7e4c669cb30c96.png,碰撞总次数为3。而当两个滑块质量悬殊时,ac01a901aa35c7afa7484dd5c354e4d9.png会很小,此时58700881bfb03ccfec66ab3d176c0490.png可以直接用efe601a9f878a41ec3c0f670c5a26ca1.png来近似表示,于是碰撞总次数约为3a7ed822783eb526651f7d055f714f0b.png。当两个滑块的质量之比a9c96c30157846187b5dafe8dcd21f49.png是100的幂时,0fb548b35e8c86c74db34adbdaf84d39.png就是10的幂,这就解释了碰撞总次数为什么会恰好是6eec0dd2fcf511d3fe79d8215ed7e006.png去掉小数点后的前若干位。

  推荐阅读

0aa87711992c69228f43400f0bdd47eb.jpeg

《你没想到的数学》

作者: 王赟

有趣的数学科普书,知乎达人王赟力作,培养锻炼数学思维和计算机思维,用数学解题方法,解决生活、学习及工程问题,有思想深度的思维训练书。

563e2b6e9174033b2b47fd822b8f7e48.jpegb0bef703d90e0d8fcd03f8e87558b945.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值