来源 | 《你没想到的数学》
作者 | 王赟
1
第一次波折:争议与批评
有这样一道有趣的物理题,出现在“3Blue1Brown”“李永乐老师”等许多在线视频中。
如图1.1所示,光滑的地面上放着大小两个滑块,左边是墙。大滑块的质量是小滑块的n倍。给大滑块一个向左的初速度,两个滑块之间及小滑块与墙之间会发生多次碰撞。假设碰撞没有能量损失,问一共会发生多少次碰撞?
图 1.1 两个小滑块
你可能觉得,这只是一道普通的物理题而已,没什么意思。先别着急下结论,我们来看看当取一些特殊值时,分别会发生的碰撞次数。
若两个滑块质量相等,则一共会发生3次碰撞;
若大滑块的质量是小滑块的1百倍,则一共会发生31次碰撞;
若大滑块的质量是小滑块的1万倍,则一共会发生314次碰撞;
若大滑块的质量是小滑块的1百万倍,则一共会发生3 141次碰撞;
若大滑块的质量是小滑块的1亿倍,则一共会发生31 415次碰撞……
是不是觉得有意思了?当两个滑块质量之比是100的幂时,碰撞次数是去掉小数点后的前若干位。在这么一道“方方正正”的物理题里,怎么会出现与圆有关的
呢?
“3Blue1Brown”频道给出了一个提示:凡是出人意料地出现的题目,背后总是隐藏着一个圆。而这道物理题里的圆,隐藏在能量守恒方程式中:
常数 (1.1)
其中表示大小滑块的质量,
表示大小滑块的速度。我鼓励读者在继续看下去之前,先根据式(1.1)自己捣鼓捣鼓,看看能不能捣鼓出
来。
2
隐藏的椭圆
式(1.1)实际上表示了空间中的一个椭圆。设大滑块的初速度为-1(负号代表向左),则能量守恒方程式可以化简为:
这个方程式表示的椭圆如图1.2所示(图中取)。在运动过程中的任何时刻,两个滑块的速度都会落在椭圆上;两个滑块的初速度,对应着短轴的下端(图中
点)。
图 1.2 椭圆代表能量守恒
下面我们试着在椭圆中画出碰撞过程。第一次碰撞,是大滑块撞小滑块。碰撞前后,两个滑块的速度除了满足能量守恒以外,还要满足动量守恒,即:
常数 (1.3)
式(1.3)在空间中,代表一条斜率为
的直线,这个例子中的斜率为
。如图1.3,过
点作一条斜率为
的直线,它与椭圆的另一个交点
就代表了第一次碰撞后,两个滑块的速度。
图 1.3 倾斜直线代表两个滑块相撞时动量守恒
第二次碰撞,是小滑块撞墙。其结果很简单,就是小滑块的速度变为反向。如图1.4,过点画一条与横轴平行的直线,这条直线与椭圆的交点
就代表了第二次碰撞后两个滑块的速度。
图 1.4 水平直线代表小滑块与墙碰撞
重复上述过程,直到。此时,两个滑块都向右运动,但小滑块追不上大滑块了,于是不会再发生碰撞。在
空间中,代表两个滑块最终速度的点一定会位于第一象限中直线
上方(图中的黄色区域),这个例子中是图1.5中的
点。
图 1.5 空间中的整个碰撞过程
3
隐藏的椭圆
可以注意到图1.5中弧、
、
、
、
所对的“椭圆周角”(角
、
、
、
、
)都是相等的,等于
。弧
与
对称,也可以让它对应“椭圆周角”
,这个角也等于
。联想到圆中有“等弧所对圆周角相等”的性质,而椭圆中没有,于是想到如果把椭圆“捏”成圆,会不会有意外发现?
将图1.5整体在横向上压缩到原来的倍,则椭圆就变成了单位圆,如图1.6所示。
图 1.6 把椭圆“捏”成单位圆
这样一压缩,线段、
、
的斜率就都从
变成了
,各段圆弧(除了
)所对的圆周角也都变成了
。现在可以利用“等弧所对圆周角相等”了——这些圆弧的长度,都等于这个圆周角的2倍,即
。
滑块的碰撞,可以看成从单位圆上不断切下一段长度为的圆弧,直到剩余部分长度不超过
为止。而整个单位圆的周长是
(注意
出现了!),于是可以得到总的碰撞次数:
这里的取整符号看起来较复杂,实际想要达到的效果是,一般情况(不能整除时)向下取整,特殊情况(能整除时)取商再减一。请读者自行验证。
由式(1.4)可以算出,当两个滑块质量相等时,,碰撞总次数为3。而当两个滑块质量悬殊时,
会很小,此时
可以直接用
来近似表示,于是碰撞总次数约为
。当两个滑块的质量之比
是100的幂时,
就是10的幂,这就解释了碰撞总次数为什么会恰好是
去掉小数点后的前若干位。
推荐阅读
《你没想到的数学》
作者: 王赟
有趣的数学科普书,知乎达人王赟力作,培养锻炼数学思维和计算机思维,用数学解题方法,解决生活、学习及工程问题,有思想深度的思维训练书。