揭下迷倒高斯、费马、欧拉的“数学女王”数论的面纱,她美得不可思议

68416560cfb0d7cf9af5a12e92cee274.png

远山启的《数学女王的邀请:初等数论入门》是初等数论入门的通俗科普读本,书中以身边的生活之事为例,由浅入深、生动形象地介绍了数的奇妙性质与规律。作者用直观、易懂的讲解,引领读者去体会数论证明的不可思议与酣畅淋漓,在惊奇与畅快之中提升对数学的理解程度。

来源 | 《数学女王的邀请:初等数论入门》

作者 | [日]远山启

译者:逸宁

在日常生活中,我们每天都离不开数。

例如,我们早上收听广播时要先把收音机调到590千赫等频率上,这里的590就是数。又如,我们要在7点30分去上学,这里的7和30也是数。再如,我们乘车需要花30日元购买车票,这里的30也是数。

b8f6e2c81667329d45fa9a17e3726f96.jpeg

数贯穿于我们日常生活中的方方面面,如影随形。恐怕在当今社会中,那些讨厌数的人可能会因此而产生心理障碍吧。

如果能扭转被数围追堵截的被动局面,主动探寻数的奥秘,你就会发现没有什么能比数更有趣了。可以说,与数打交道比玩任何游戏都好玩。

26a26ebfe11650c4a9a0d2ccc4b8f902.jpeg

本书旨在帮助读者理解、掌握数的本质。

337a967efffea2a20db2a7ecf8eb0408.jpeg

读者阅读本书,不需要具备深奥的预备知识,只要有初中二年级的数学水平就足够了。

在学术上,我们将挖掘蕴藏于数中的法则的研究称为“整数论”或“数论”,本书介绍的便是整数论的入门知识。

ebaa499d60be6d22f076615af58e2e7e.jpeg

我们可以亲自通过计算来尽情体会整数论的乐趣。当我们发现,在自己曾一度认为索然无味的数的计算中也蕴含着不可思议的法则时,也许就再也无法忘却数的魅力了。

f785bcc943d8eb0623e2026ed0a2b689.jpeg

如果那些在学校里讨厌学习数学的人,能通过本书的介绍体会到整数论的乐趣,我想他们也会以此为契机喜欢上数学。 

远山启

45eb8a920396b79a4fd349f1bb041eb6.jpeg

作为纯粹数学的分支之一,主要研究“整数”性质的数论被称之为“数学女王”,引得无数数学家追逐痴迷。它的概念、定理和证明的简洁、普适、深刻和美学,以及它在数学和科学中的应用,让其成为数学中一个非常重要且富有魅力的领域。

55e5a79f33796a5e1b95f8275fa0a2df.jpeg

本书是初等数论入门的通俗科普读本。书中以身边的生活之事为例,由浅入深、生动形象地介绍了数的奇妙性质与规律。

8c5790a40fca44ad6ccacff975aa6c6d.jpeg

作者远山启是日本当代著名数学教育家,倡导改革传统的应试数学教育方式。

在这本书中,他用直观、易懂的讲解,引领读者去体会数论证明的不可思议与酣畅淋漓,在惊奇与畅快之中提升对数学的理解程度。

d6dc549bfa932b3e14c5f17fc4764300.jpeg

本书可作为学生了解数论、提高算术能力的辅助读物,也可作为技术人员理解计算科学的参考用书。

全书32开软壳平装,内页是80g纯质纸,印刷清晰,排版疏朗,阅读体验良好。适读年龄16岁+。

  推荐阅读

22a38a9d002965c3716074e6d17b3e7b.jpeg

《数学女王的邀请:初等数论入门》

作者:[日]远山启

译者:逸宁

日本长销数论入门科普读物,日本学校图书馆协议会选定图书。

迷倒高斯、费马、欧拉的“数学女王”,究竟有何魅人魔力?

本书是初等数论入门的通俗科普读本。书中以身边的生活之事为例,由浅入深、生动形象地介绍了数的奇妙性质与规律。作者用直观、易懂的讲解,引领读者去体会数论证明的不可思议与酣畅淋漓,在惊奇与畅快之中提升对数学的理解程度。

02

7892d4462e7905c31f3b982075330e0b.jpeg

《数学与生活》(1、2、3)

作者:远山启

译者:吕砚山、莫德举等

定价:189.4元(单本59.8起)

日本数学教育议会创立者远山启力作,通俗讲解消除"应试数学"带来给初中数学高中数学带来的恐惧感,了解什么是数学,充分感受数学之美,培养理科逻辑思维。

《数学与生活》为日本数学教育改革之作,旨在还原被考试扭曲的数学,为读者呈现数学的真正容颜,消除应试教学模式带来的数学恐惧感。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值