数学拥有无穷的力量。它既帮助游戏开发工程师建模物理世界,也帮助量化金融分析师赚取利润,还帮助音频处理工程师制作音乐。在数据科学和机器学习领域,数学知识更是不可或缺的。
有人热爱数学,将它比作诗歌,为之着迷一生;有人很难领会数学的妙处,受困于“数学焦虑症”。而图灵出版的程序员数学入门书,正是为了帮助程序员消除这种焦虑,用自己熟悉的工具,即代码,重新发现数学之美。
01
《程序员数学 用Python学透线性代数和微积分》
作者:保罗·奥兰德(Paul Orland)
译者:百度KFive
代码和数学是相知相惜的好伙伴,它们基于共同的理性思维,数学公式的推导可以自然地在编写代码的过程中展开。
500余幅图片,本书以图文结合的方式帮助你用Python代码解决程序设计中的数学问题。
300余个练习,通过边学边练,你会发现线性代数和微积分的重要概念跃然纸上、印在脑中。
02
《程序员的数学》(系列全四册)
作者:[日] 结城浩,[日] 平冈和幸,堀玄,[日] 宫崎修一
机器学习、数据挖掘、模式识别基础知识,热销书程序员的数学系列套装,IT计算机编程基础数据教程书籍,掌握编程所需的基础数学知识和数学思维。
03
《深度学习的数学》
作者:[日]涌井良幸、涌井贞美
译者:杨瑞龙
一本书掌握深度学习的数学基础知识!结合235幅插图和大量示例,基于Excel实践,直击神经网络根本原理。
04
《白话机器学习的数学》
作者:[日]立石贤吾
译者:郑明智
一本书掌握机器学习的基础数学。1.步步引导,对话形式好理解 结合回归和分类的具体问题,逐步讲解机器学习中实用的基础数学知识 2.层层拆解,复杂公式看得懂 把数学表达式拆开看,一部分一部分地去理解就好懂了 3.用Python实现分类和回归算法 通过实际的Python编程讲解数学公式的应用,加深读者对数学知识的理解。
05
《白话深度学习的数学》
作者:[日]立石贤吾
译者:郑明智
本书通过想要学习深度学习的程序员绫乃和她朋友美绪的对话,逐步讲解深度学习中实用的数学基础知识。内容涉及神经网络的结构、感知机、正向传播和反向传播,以及卷积神经网络。其中,重点讲解了容易成为学习绊脚石的数学公式和符号。同时,还通过实际的Python 编程实现神经网络,加深读者对相关数学知识的理解。
06
《用Python学数学》
作者:[美]彼得·法雷尔(Peter Farrell)
译者:严开
用Python体验“全新”的数学:不为解题,不记公式,彻底摆脱枯燥——纯粹好玩,自由发挥想象,自己动手制作趣味数学
用Python让数学活起来:看得见动起来充满立体感的“活”数学,像魔法一样解决常见数学问题
涵盖中学数学重要主题,如代数学、几何学、三角学和微积分
各种让人欲罢不能的案例,编程与数学强强联合:本书以趣味探险路线展示案例,让你真正领略数学的实用性与编程的趣味性
07
《用Python动手学统计学》
作者:[日]马场真哉
译者:吴昊天
文科生也能学会的统计学入门书!
本书是面向零基础读者的统计学入门书,对同一个知识点分别使用文字、公式和Python 示例代码加以讲解,循序渐进地介绍了统计学和Python 的基础知识、使用Python 进行统计分析的方法、正态线性模型和广义线性模型等统计模型,以及机器学习等。
08
《具体数学:计算机科学基础(第2版)》
作者:[美] Ronald L. Graham, Donald E. Knuth, Oren Patashnik
译者:张明尧 张凡
(非入门)
作者为著名数学家,美国加州大学专业教席,美国数学学会前任主席葛立恒、著名计算机科学家,算法与程序设计技术的先驱者、斯坦福大学计算机系荣休教授,图灵奖得主高德纳、著名计算机科学家,BibTeX的创始人之一帕塔什尼克。
当今顶级数学家和计算机科学家合著经典著作,出版以来经久不衰,被世界多所知名大学采纳为教材,是当代计算机科学方面的一部重要著作。
大师笔法,不仅讲述了数学问题和技巧,而且教导解决问题的方法,深入浅出,妙趣横生。