数学圈爆火10年的两套数学思维入门神作,豆瓣均分9.0,读者评价“重燃了对数学的热情”...

2ea0f38b414bfcefaa0ce72afe7d8c1c.png

毋庸置疑,《数学女孩(1-6)》这套书在数学科普界都是很传奇的存在,它用一种全新的写法颠覆了众多认为数学只有繁琐无趣的公式的人的认知,让许多人重新认识了数学,也点燃了对数学的热情。内容由浅入深,数学讲解部分十分精妙,被称为“绝赞的初等数学科普书”。

而《数学与生活(1-4)》这套书,更是改写了中学数学的写法,启发了无数学子。全书用日常生活和东西方各国脍炙人口的故事,用通俗易懂的语言,将数学知识和原理一一呈现,犹如一本有趣的故事集。

《数学女孩》

为什么数学总是学不进去?翻开数学书是不是世界上最痛苦的事情之一?好不容易翻开数学书,看完的东西马上就忘了?

拿到手的数学书或者是讲解题集根本看都不想看,密密麻麻的定理罗列更是一个字也读不进去?

在无数次用“数学就这是这个样子”为借口安慰自己之后,你有没有想过,可能是工具出了问题?

有这样一套数学书,在国外卖出 57 万册,中文版也卖出了 12 万册,被人称为“绝赞的数学科普书”,更有读者直呼“被骗”后仍然手不释卷,看完第一册就开始疯狂催更!

fa64656449f8f3cefde6b1c9611b6ec7.jpeg

北京大学海外传播中心为数学科学学院制作的“北大学科数学篇”宣传片都给他特写,说他能够展示数学的浪漫。

724277439e224b478593dc5ea5a8d2df.jpeg

什么数学书能让北大数科肯定,让读者超级上头?

7af45e118d7a7f8d26f73012db590262.png

结城浩 1963 出生,现在居住在东京地区,是一个马上就要六十岁的程序员“大叔”,他的作品“数学女孩”系列,就是一套让人爱不释手的数学书。

dd0900addcde3bfe3cc042a96429411d.jpeg

结城浩自己画的icon线程鬼娃娃

作为其在社交媒体上的头像

“数学女孩”系列的内容是围绕主角“我”——一个喜欢数学的男高中生展开的,“我”的同学米尔嘉、学妹泰朵拉、泰朵拉的同班同学理莎还有我的表妹尤里,我们经常在一起讨论数学问题。

普通的人物关系描述之下,读者们已经可以感受到这本书的独特之处了。

10fa9e75388997f694f63deb67c5e603.jpeg

区别于普通数学书常规的逻辑,“数学女孩”系列并不是由作者作为老师来向读者输出知识,而是在书中角色的提问、讨论和争论中,推动数学定理的推导

2b4bcec1aa31fdb8bde700db434e266c.jpeg

表妹尤里是在“我”的带动下喜欢上数学,她和学妹泰朵拉扮演提出问题的角色,而数学能力出众的才女米尔嘉和我担任解答问题的角色,会在对话中引导尤里和泰朵拉进行思考,计算机达人理莎则会给所有人从程序执行的角度给出思路。

f0c597625407c1a51796dd6361143d11.jpeg

阅读《数学女孩》时,不同数学水平的读者都能带入其中,跟随尤里一起提出疑问,或者是和米尔嘉一起解释泰朵拉无法理解的内容。

尤里和泰朵拉的疑问就像是RPG游戏里的一个个剧情点,触发剧情后由“我”和米尔嘉来解决疑问,在一次次的解决疑问中理清思路,理解基础知识的内容和底层公式的由来,最后通过整合所有的知识来解决一个重大的数学难题。

4e7031beebfca462c2f4b4131145fd59.jpeg

法国数学家、天体力学家庞加莱

亨利·庞加莱在《科学与假设》中说,“由于我们既不能这样追究至无穷,则凡演绎的科学,特别是几何学,必建设在几条不可证明的公理上才行。故凡几何学的专书的公式开始就陈述这些公理”。

即使是这样,如果拿出一本翻开就写着“此处是公理,你要相信他”的几何学书,恐怕多数读者会立即将这本书合上吧!

8e1de39fa1054c145be51d04d55ef42d.jpeg

在应试的数学学习中,学生们往往更重视记住定理和公式、刷题、提高熟练度,而忽视了思考的重要性。

但是正如孔子所说:“学而不思则惘”,如果忽略了对于定理推导过程的思考和理解,那么就无法自如地运用。

《数学女孩》系列把由浅入深的数学思考隐藏在日常的高中生活之中,通过轻松的对话和讨论,给严肃枯燥的数学推导披上了一层青春小说的外衣,让翻开书、读下去、想清楚、记下来的过程也更加轻松愉快,帮助读者真正地掌握数学知识、理解数学定理,将数学思维更好地运用到数学考试中去。

希望《数学女孩》能为读者们打开新世界的大门,不再畏惧翻开数学书,也不再畏惧数学推导本身!

01

d5a33a42b6248d61117bea461980823e.png

《数学女孩》(1-6)

作者:结城浩

译者:朱一飞等

日本数学会强力推荐,内容由浅入深,绝赞的数学科普书,在动人的故事中走近数学,在青春的浪漫中理解数学。

《数学女孩》系列以小说的形式展开,从基础数学到费马大定理、哥德尔不完备定理、随机算法、伽罗瓦理论、庞加莱猜想,重点描述一群年轻人探寻数学之美的过程。

《数学女孩》以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“绝赞的初等数学科普书”。内容涉及数列和数学模型、斐波那契数列、卷积、调和数、泰勒展开、巴塞尔问题、分拆数等。

《数学女孩2:费马大定理》有许多巧思。每一章针对不同议题进行解说,再于最后一章切入正题——费马大定理。作者巧妙地以每一章的概念作为拼图,拼出被称为“世纪谜题”的费马大定理的大概证明。

《数学女孩3:哥德尔不完备定理》有许多巧思。每一章针对不同议题进行解说,再于最后一章切入正题——哥德尔不完备定理。作者巧妙地以每一章的概念作为拼图,拼出与塔斯基的形式语言的真理论、图灵机和判定问题一道被誉为“现代逻辑科学在哲学方面的三大成果”的哥德尔不完备定理的大概证明。

《数学女孩4:随机算法》以“随机算法”为主题,从纯粹的数学和计算机程序设计两个角度对随机算法进行了细致的讲解。内容涉及排列组合、概率、期望、线性法则、矩阵、顺序查找算法、二分查找算法、冒泡排序算法和快速排序算法等。

《数学女孩5:伽罗瓦理论》从鬼脚图讲起,结合二次方程式的求根公式、尺规作图、群和域等知识,最终带领读者进入伽罗瓦理论的世界,还原伽罗瓦短暂的一生中璀璨不朽的数学成就。

《数学女孩6:庞加莱猜想》以百年数学难题“庞加莱猜想”为主题,从柯斯堡七桥问题入手,详细讲解了拓扑学、非欧几何、流形、微分方程、高斯绝妙定理和傅里叶展开式等数学知识,还原了庞加莱猜想的探索历程,一气呵成,带领读者一同追寻“宇宙的形状”。

《数学与生活》

从前,数学的应用曾经局限在一些特殊的人们之间。对于多数人来说,数学仅仅是作为考试及格的必要科目,而在毕业以后则嫌其无用很快就全忘光了。

可是近来情况有所变化,在各种场合都开始运用数学了。不用说自然科学或技术方面离不开数学,即使在经济、政治方面也离不开数学。至于在企业的经营管理、商品的销售上,为了能更有发展,数学的作用就更大了。对于不爱学数学的人来说,诚然将数学视为世上难学之事物,但若不学数学,日子也并不会好过。这是对于过去的那种不从事政治、经济活动的人来说的。至于当今世界将向何处去,虽仍是专家们在研究的问题,但毫无疑问,人类生活将会逐渐地走向集体化和社会化。因而,数学的活跃时代也就来到了。

在20世纪后半叶,数学也许会获得从未有过的广泛应用。不过,这样的时代已经开始了。掌握一定程度的数学知识,是今后在世界上生存不可缺少的条件。

没有必要要求任何人都具备很高的数学水准。对于20世纪后半叶在世界上从事各种活动的日本人来说,本人认为可以按“到微分方程为止”这样来划线。

确实,如果能把“到微分方程为止”这样的数学知识变成日本人的常识,这将是非常理想的。

这就是写这本入门书的基本目的。

对于读者的希望首先是,在学习数学时,应抛弃那种认为必须具备特殊条件的成见。和其他科学一样,数学也不是某些专人所臆造出来的,而是如漱石所言,是“左邻右舍众多的人累积思考而成”的。

在数学中运用的逻辑与日常生活中表现的逻辑并无二致,而是其精练出的一部分。笛卡儿说过:“世上的准则在于最公平的分配。”从数学角度来考虑,也是除了共同遵守的准则以外,别无其他。因此,为了学好数学,无论是谁都要具备的共识就是必须有毅力。毅力之所以重要,是因为数学学识是靠循序渐近、逐步累积得来的,不可能一蹴而就。无论如何,事先要下定一步一步迈进的决心。

因此,本书脱开众所周知的那些术语的圈子,力求从日常的逻辑中引出数学的道理。

为此,也将过去曾用过的一些专门术语改变成容易学的日常用语,如将分数的约分当作“折叠”来处理就是一例。由此看来,也许这是一本很有人情味的“数学入门”书。

远山启

1959年10月

推荐阅读

0b42e59dbabe2887eed9aa11282aabfc.jpeg

数学领域的百年经典

远山启 | 著

吕砚山,李诵雪,马杰,莫德举 | 译

《数学与生活(修订版)》以生动有趣的文字,系统地介绍了从数的产生到微分方程的全部数学知识,包括初等数学和高等数学两方面内容之精华。这些知识是人们今后从事各种活动所必须的。书中为广大读者着想,避开了专用术语,力求结合日常逻辑来介绍数学。读来引人入胜,枯燥之感。从中不但可得益于数学,而且还可学到不少物理、化学、天文、地理等方面的知识。

《数学与生活2 》为日本数学教育议会创立者远山启的数学教育科普作品。书中通俗解读了数学教育中的重点、难点知识,用直观的方式梳理了“量与数”“集合与逻辑”“空间与图形”“变数与函数”的知识体系,并结合作者多年的教学与研究经验,向读者传授了独创的教学方法与学习技巧,引导学习者掌握具有发展性的思考方法,真正从原理上理解数学知识。

《数学与生活3》不懂音符、乐理的人也能欣赏音乐,甚至可以成为音乐鉴赏家。不懂数学公式的人,是否也能理解现代数学的体系与思考方法,领略其中令人惊叹的超越性美景呢?

《数学与生活4:函数是什么》本书为日本数学家远山启的函数科普作品,书中以“理解函数”为线索,以人物对话的形式,从算术开始逐步讲解函数的本质概念及其发展,为读者完整呈现了函数概念,并引导读者理解“从静止走向运动、从离散走向连续、从运算走向关系”的数学思想。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值