什么是 MCP,为什么大家突然都在讨论它?

“即使是最先进的模型,也会因为无法访问外部数据而受限——它们被困在信息孤岛和传统系统背后。”Anthropic 这样解释为什么上下文整合如此重要。

如今的大语言模型(LLM)在封闭环境下已经足够聪明,但一旦需要获取训练数据之外的信息,它们的表现就会大打折扣。要让 AI Agent 真正发挥作用,它必须能够在正确的时间访问到正确的上下文信息——无论是你的文件、知识库,还是各种工具——甚至还要能基于这些上下文完成一些操作,比如更新文档、发送邮件等。但在过去,将 AI 模型与这些外部信息源打通通常都是一个混乱、零散的过程。开发者不得不为每个数据源或 API 编写专门的适配代码或插件,这种“手工集成”的方式既脆弱又难以扩展。

为了解决这个问题,Anthropic 提出了 Model Context Protocol(MCP)——一个开放标准,旨在把 AI 助手与各种数据和工具连接起来,使模型可以同时接入多种不同来源的上下文信息。这个协议首次发布是在 2024 年 11 月。当时反响平平,但如今 MCP 已经开始流行,热度超过了 Langchain,并有望很快赶超 OpenAPI 和 CrewAI。越来越多的主流 AI 厂商和开源社区开始支持 MCP,认为它有潜力成为构建 Agent 化 AI 系统的关键工具。为什么 MCP 会被看好?

在这篇文章中,我们将深入解析 MCP——为什么它近期成为热门话题,MCP 如何推动 AI 朝着更高集成度和更强上下文感知的方向发展,它在 Agent 工作流中的角色,以及开发者、研究人员、AI 工程师和技术管理者应当了解的一些鲜为人知的细节。我们还将探讨一些鲜有人尝试但极具创新性的 MCP 应用案例。整体来看,这既是一篇非常适合入门的指南,也同样适用于那些已经开始尝试 MCP、希望进一步深入了解的用户。继续往下看!

本文内容包括:

  • 为什么 MCP 现在才火(而不是去年 11 月)?

  • 什么是 MCP,它是如何工作的?

  • MCP 的技术概览

  • 如何真正开始使用 MCP?

  • 在 MCP 之前,AI 系统是如何处理上下文和工具接入的?

  • MCP 是“银弹”式的万能解决方案吗?

  • MCP 在 Agent 编排中的角色及其在 Agent 工作流中的地位

  • MCP 解锁的新可能性

  • 总结思考

为什么 MCP 现在才火(而不是去年 11 月)?

MCP 最早是在 2024 年 11 月由 Anthropic 以开源形式发布的。虽然当时这个想法很新颖,但并没有引起太多关注。而在 2025 年年初,MCP 真正开始在 AI 社区引爆,背后主要有几个关键原因:

  • 集成问题的解决者

AI Agent 和 Agentic 工作流在 2023 到 2024 年成为热门概念,但它们的致命弱点始终没变——很难与真实的业务系统和数据进行集成。起初大家的关注点主要集中在模型能力和提示工程上,而非上下文集成。而 MCP 的出现正好填补了这一空白,它明确提出了“如何把已有的数据源(如文件系统、数据库、API 等)接入 AI 工作流”的标准。随着大家逐渐理解这一点,MCP 被视为构建真正可落地、面向生产环境的 AI Agent 所缺失的关键拼图。(这是 HumanX 大会上的一个重要观点:过去几年我们主要在构建单一的、面向特定任务的 AI 模型,而随着需求和复杂度的提升,趋势正在向系统集成方向演进——多个专业模型、软件组件、API、数据源和用户界面之间需要有序协作。)

  • 社区与生态初具规模

在短短几个月内,MCP 从一个概念演变为一个逐渐成型的生态系统。早期接入者包括 Block(Square)、Apollo、Zed、Replit、Codeium 和 Sourcegraph 等公司,它们开始将 MCP 集成进自己的平台中。到了 2025 年,整个生态快速壮大——仅到 2 月,社区就已经构建出超过 1,000 个 MCP server(也就是连接器)。MCP 显然击中了行业的痛点,在迈向更强上下文感知与集成式 AI 的大潮中,它成为越来越多人的选择。网络效应也进一步放大了它的价值:MCP 可接入的工具越多,使用 MCP 的吸引力就越大。

  • “事实标准”的势头

不同于又一个专属 SDK 或私有框架,MCP 是开放且与模型无关的标准,并由头部 AI 厂商背书。这意味着,无论是 Claude、GPT-4 还是各种开源 LLM,都可以接入 MCP,而开发者和企业也可以自由创建 MCP 接口,无需获得许可。社区中已经有不少人将 MCP 看作是连接 AI 系统与外部数据的标准化竞赛中的潜在赢家,就像 USB、HTTP 或 ODBC 在各自领域成为通用标准一样。

  • 快速迭代与开发者教育

Anthropic 并非发布完 MCP 就撒手不管,而是持续在推动 MCP 的优化与推广。比如在最近的 AI 峰会上,Anthropic 的 Mahesh Murthy 举办的关于 MCP 的 workshop 引发广泛关注,加速了 MCP 的普及。

那么,什么是 MCP?它是如何工作的?

MCP(Model Context Protocol)制定了一套清晰的规则,指导 AI 模型如何查找、连接和使用外部工具,无论是查询数据库还是执行某个命令。这让模型不再受限于静态的训练数据,而是能够根据实际需求灵活调用资源,增强对现实世界的感知和响应能力。

MCP 的技术概览:

MCP 的一个亮点功能是它支持动态发现机制 —— AI Agent 可以自动检测可用的 MCP server 及其功能,而不需要手动写死每个集成逻辑。比如说,当你新启动了一个 MCP server(比如某个 CRM 系统),Agent 就可以立即通过标准化的 API 自动识别并调用它,这种灵活性是传统方式很难实现的。

那我该如何开始使用 MCP 呢?

最好的起点是查看官方的 MCP 文档和代码仓库。Anthropic 已经开源了 MCP 的协议规范,并提供了多种语言的 SDK(比如 Python,现在甚至支持 Java)。通常的入门步骤如下:

  • 运行或安装一个 MCP server,用于连接你关注的工具或数据源。

Anthropic 的开源仓库中已经提供了多个热门系统的预构建 server(如 Google Drive、Slack、Git、数据库等),你只需安装并配置这些 server(一般就是运行一条命令并提供凭证或密钥)即可。

  • 在你的 AI 应用中设置 MCP 客户端。

如果你使用的是 Claude 的应用,可以直接在界面中添加 MCP server。如果你正在开发自己的 Agent,可以通过 MCP SDK 将其连接到 server(提供地址和端口即可)。

  • 一旦你在客户端启用了 MCP 服务,客户端就会自动识别并加载 MCP server 提供的扩展功能,包括新的工具、资源或提示模板。

  • 开始调用并持续迭代。

模型或 Agent 就可以根据需要调用 MCP 提供的操作。你需要监控日志,确保请求能够正确地到达 MCP server 并收到响应。

如果你想快速体验 MCP,Anthropic 推荐你先试试 Claude 桌面端集成(如果你有权限),或者直接运行官方示例 server 并参考他们提供的 quickstart 指南。MCP 社区也非常活跃,目前已有大量 MCP server 的目录在不断扩展。一些热门的 connector 包括 Google 服务(如 Drive、Gmail、Calendar)、Slack(聊天和文件访问)、GitHub/Git(代码仓库)、Postgres 等数据库、网页浏览器或 Puppeteer(网页浏览能力)等。很多 server 已被收录在社区开发的目录网站中,官方 GitHub 上也汇总了大量可用的 connector 实现,方便你直接上手。如果你用的工具暂时没有现成的支持,也可以通过 SDK 自行开发 MCP server,通常只需要对该工具的 API 做一层简单封装,以 MCP 格式暴露相应的功能即可。

感谢 Will Schenk 对 MCP 的使用方式做出的澄清和讲解。他还分享了一个快速上手指南,结合 Tezlab 的特斯拉监控服务,展示了 MCP 实际运行的流程。

www.youtube.com/watch?v=O3AZ0beYHFE

在 MCP 出现之前,AI 系统是如何处理上下文信息和工具调用的?

我们来简单回顾下传统的几种方式,并对比 MCP 的不同之处:

  • 自定义 API 集成(一次性连接器)

最常见的方法是为每个服务单独编写自定义代码或使用特定 SDK。比如,如果你想让 AI Agent 同时访问 Google Drive 和一个 SQL 数据库,就需要分别集成 Google 的 API 和数据库驱动,每一个都要处理独立的认证机制、数据格式和各种兼容问题,开发体验非常繁琐。而 MCP 则像是一把通用“钥匙”(协议),可以解锁很多“门”。更重要的是,只要新增一个 MCP server,客户端无需做任何修改就能使用。

  • 语言模型插件(如 OpenAI Plugins 等)

另一种方法是在 2023 年兴起,即为模型提供标准化插件接口(通常是 OpenAPI 格式),让它可以受控地调用外部 API(比如 ChatGPT 的 Plugins 系统)。虽然从理念上看这和 MCP 有些相似(标准化工具访问方式),但这些插件通常是专有的,而且受限较多 —— 每个插件都要单独开发和托管,只能在特定平台(如 ChatGPT 或 Bing Chat)使用。

而且插件大多是单向信息获取(模型调用 API 返回结果),不支持持续的交互会话。相比之下,MCP 是开源且通用的(任何人都可以实现它,不受限于某个 AI 平台),并支持丰富的双向交互。你可以把 MCP 理解成模型和工具之间的对话,而插件更像是“问一句答一句”的静态问答。

  • 通过框架调用工具(LangChain 工具、Agent)

像 LangChain 这样的 Agent 编排框架,让“给模型配工具”这个思路广为流行。比如你可以定义一个 search() 工具或 calculate() 工具,Agent(通过 LLM)判断何时调用这些工具。这种方式很强大,但每个工具的底层仍需要开发者手动实现。LangChain 虽然提供了 500 多个标准化接口的工具,但开发者仍需要自行连接和配置。MCP 和它是互补的 —— MCP 提供的是“工具实现层”的标准化接口。

你可以把 MCP server 理解为一个“可直接调用的工具库”,任何 Agent 都可以使用。它们的关键差异在于标准化的“入口”:LangChain 面向开发者(Tool 接口类)统一工具接入代码,而 MCP 面向模型本身 —— AI Agent 可以在运行时自主发现和调用 MCP 工具。这意味着就算你没有专门为某个工具写对接逻辑,模型也能即时调用。

事实上,两者正在融合:LangChain 团队在注意到 MCP 热度后,也发布了适配器,使 MCP server 可以被当作 LangChain 工具调用。因此,无论你是在 LangChain 或其他框架中构建的 Agent,都能像使用本地函数一样使用 MCP 工具,同时享受到日益扩展的 MCP 生态。

  • RAG 与向量数据库(Retrieval-Augmented Generation)

一种流行的方法是通过 RAG 架构为模型提供上下文信息,也就是用 retriever 检索文档知识库(文本或向量),再将检索结果注入 prompt,弥补模型的知识截止问题或记忆局限。但这种方式一般只能提供静态文本片段,模型无法主动发起操作或查询。

MCP 和 RAG 是可以协同工作的,比如你可以通过 MCP server 接入向量数据库或搜索引擎,让模型主动“发请求”去查询,而不是被动等待系统帮它“塞内容”。

可以说,MCP 是一种更通用的机制:RAG 提供的是“被动”上下文,而 MCP 让模型能“主动”获取和操作上下文,借助标准接口触发实际操作。特别是在需要实时、交互式数据的场景下(比如实时查询数据库、发布内容),MCP 的能力远超“只检索文本”的方案。

MCP 是“银弹”式的万能解决方案吗?

MCP 当然不是万能钥匙,它更像是一个非常方便的集成层。但就像所有新兴技术一样,MCP 也带来了它自身的一系列复杂性和挑战,在大规模采用前,开发者和组织都需要认真考虑。例如,其中一个主要问题是管理多个工具 server 所带来的额外负担

在生产环境中,为了保证服务稳定、安全并具备可扩展性,运行和维护这些本地 server 往往是个棘手的问题。MCP 的最初设计主要面向本地和桌面环境使用,这也引发了人们对其在云架构和多用户场景中适应性的担忧。虽然社区中已有开发者提出让 MCP 更加无状态、支持分布式部署的改进方向,但这仍是一个持续推进中的问题。

另一个问题是工具的可用性。虽然 MCP 扩展了 AI 模型可调用的工具集,但这并不意味着模型就一定能高效使用这些工具。之前的 Agent 框架就已表明,模型在工具选择和调用方面仍然存在困难。MCP 尝试通过提供结构化的工具描述和规范来缓解这个问题,但最终效果仍取决于工具定义的质量以及 AI 对这些描述的理解能力。正如 LangChain 创始人 Harrison Chase 所强调的,社区主导的方式有助于改进工具文档,进而提升可用性,但这方面仍在不断打磨中。

除了落地过程中的问题,MCP 的成熟度也是一个必须考虑的因素。作为一项相对较新的技术,它仍在快速演进,标准尚未完全稳定。这就可能导致版本不兼容的变更,开发者需要频繁更新 server 和 client。虽然 MCP 的核心思想已经相对稳定,但仍建议开发者为版本升级和最佳实践的演进做好准备。

兼容性是另一个潜在限制。目前,MCP 在 Anthropic 生态中(如 Claude)得到了原生支持,但在更广泛的 AI 平台上仍未普及,其他厂商可能尚未原生集成 MCP,这就需要通过适配器或自定义集成来解决。在 MCP 没有被主流平台广泛接受前,其使用范围会受到一定限制。对于某些简单场景来说,MCP 可能显得有些“杀鸡用牛刀” —— 如果模型只需要调用一两个简单 API,直接调用 API 可能比引入 MCP 更高效。而 MCP 的消息机制和 server 配置确实存在一定学习门槛,因此它带来的便利是否值得,还需要和引入的复杂性进行权衡。

安全性和可观测性同样是 MCP 需要解决的问题。由于 MCP 本身是中间层,如何进行身份认证和权限控制,防止未经授权的访问,是系统设计中必须考虑的方面。目前社区中已有像 MCP Guardian 这样的开源项目,试图通过日志记录和策略管控来提升安全性,但在真正的企业级应用中,如何全面保障 MCP 的安全仍是一个持续优化的过程。

总体来看,虽然 MCP 存在一些限制,但这些并不是阻碍使用的“致命问题”。最理想的方式是从一些试验性或非关键场景开始使用,逐步熟悉它的机制和潜力。MCP 的一大优势就是拥有一个活跃的开源社区 —— 因为它是开放的,使用过程中遇到的问题往往可以通过社区协作来快速解决。

MCP 在 Agentic Orchestration 中的角色及其在 Agent 工作流中的位置。

以前我们探讨了构建自主 Agent 的核心模块:身份与上下文(Profiling)、知识(Knowledge)、记忆(Memory)、推理与规划(Reasoning/Planning)、反思(Reflection)和行动(Action)。

一个合格的 Agent 需要观察并理解环境(Profiling/Knowledge),记住过往交互(Memory),规划下一步行动(Reasoning),执行操作(调用工具或生成输出),最后进行反思和学习。那么 MCP 属于哪一部分呢?

MCP 本身并不是一个 “Agent 框架”,它更像是 Agent 系统中的标准化集成层,专注于“行动”模块,特别是如何让 Agent 以统一方式与外部工具或数据进行交互。MCP 提供了连接 AI Agent 和外部世界的数据通道,既规范又安全。没有 MCP(或类似机制)的话,每当 Agent 需要与外部交互 —— 比如获取文件、查询数据库、调用 API —— 开发者都需要编写定制集成代码或使用零散的方案。这就像是你在造一个机器人,但每根手指都要手工打造来抓不同物体 —— 工作量巨大且不可扩展。

需要特别强调的是,MCP 并不是 Agent 的编排引擎或大脑,而是 Agent 架构中的集成层。它是对 LangChain、LangGraph、CrewAI、LlamaIndex 等编排框架的补充,为 Agent 提供一个统一的“工具箱”接口,让其能够标准化调用外部工具。MCP 并不取代“何时使用工具、为什么使用工具”的决策逻辑 —— 这部分依旧是编排引擎的职责,而 MCP 负责定义“如何调用工具”以及“如何传递信息”。

你可以将 MCP 理解为 Agent 的 API 网关,通过统一协议连接各类 client(Agent)与 server(工具),将集成难度从“ N×M 问题”降维为 “N+M 问题”,实现 client 和 server 的通用兼容。最终,MCP 简化了外部功能的集成方式,让 Agent 更具多样性、适应性和跨场景任务能力。

MCP 解锁的新可能性

MCP 仍然是一项新技术,它的全部潜力还在不断被探索中。第一波应用场景已经比较明显 —— 比如把企业数据接入聊天助手,或者让代码 Agent 能访问代码仓库。但一些正在出现的新应用,可能会真正把 AI Agent 推向新的高度。

  • 多步骤、跨系统的工作流。在现实中,Agent 系统常常需要跨平台协作。 比如一个 AI 需要帮你规划活动:它要查看你的日历、预订场地、发送邀请邮件、安排交通、更新预算表。现在,要实现这些流程,通常需要手动拼接多个 API 接口。而通过 MCP,所有这些操作都可以通过一个统一接口完成。Agent 只需要调用一系列 MCP 工具(每个任务对应一个工具),整个过程中上下文保持一致 —— 不会断链、不需要每个工具都做定制集成。

  • 具备环境感知能力的 Agent(包括机器人)。除了调用工具,MCP 还可以赋能那些嵌入在智能环境中的 AI Agent —— 无论是智能家居,还是操作系统。AI 助理可以通过标准化的 MCP server 与传感器、IoT 设备或系统功能交互。AI 不再是孤立运行的程序,而是能够实时感知环境,从而提供更自然、更主动的帮助。

  • 多 Agent 协作(Agent 社会)。这个方向特别令人期待 —— MCP 还可以作为多 Agent 系统的共享工作空间。不同专长的 AI Agent —— 有的负责调研、有的负责规划、有的负责执行 —— 可以通过 MCP 动态交换信息、协同完成任务。每个 Agent 不需要集成所有工具,它们只需访问一个共享的工具集即可。

  • 深度集成的个人 AI 助理。MCP 也可以让用户自行配置 AI 安全访问个人数据和应用。比如,本地部署一个 MCP server,可以让 AI 访问用户的邮件、笔记、智能设备,同时又不用把敏感数据暴露给第三方服务。这就有可能打造一个“超个性化”的 AI 助理,而不依赖云端平台。

  • 企业级治理与安全控制。对企业而言,MCP 提供了标准化的 AI 接入方式,大幅减少集成成本。同时,它也带来了治理能力:所有 AI 的交互都可以被记录、监控和审查,从而防止出现意料之外的操作,同时保障系统效率。

以上只是 MCP 潜力的冰山一角。通过让 AI 能够进行流畅、具备上下文感知能力的多步骤交互,MCP 正在推动 Agent 向真正的自主工作流执行迈进。

总结

MCP 正在迅速成长为一项强大的标准协议,它让 AI 从一个孤立的“思考体”真正变成了可以行动的“执行者”。通过简化 Agent 与外部系统之间的连接方式,MCP 为构建更强大、更具交互性、更贴近用户需求的 AI 工作流打通了关键路径。

即将推出的重要功能(基于 Anthropic 的 Mahesh Murag 在 Workshop 上的分享)

Remote Servers 与 OAuth

  • 支持通过 SSE 实现远程托管,体验更加流畅。

  • 内置 OAuth 2.0,方便安全地集成第三方服务(如 Slack)。

官方 MCP Registry

  • 提供中心化的服务注册与验证功能。

  • 面向企业友好:支持私有 Registry 的部署。

Well-Known Endpoints

  • 通过标准化的 .well-known/mcp 文件,支持对第一方服务器的自动发现。

其他增强功能

  • 支持 Streaming、无状态连接、服务器主动行为、更完善的命名空间管理等。

每一次更新都在不断增强 MCP 的鲁棒性,助力 Agent 更深入地嵌入到真实世界的工作流中。

MCP 是一个由社区推动的项目,因此建议持续关注它的发展路线图,积极参与讨论,共同定义未来 AI 与软件系统的连接方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值