人工智能正如火如荼地席卷全球,大语言模型(LLM)成为了这场科技变革的核心力量。进入 2025 年,ChatGPT、Claude、DeepSeek 等模型持续掀起新的技术浪潮。然而,你可曾想过,从零开始构建一个属于自己的大语言模型?这看似是大厂的专属任务,但事实远非如此。
这本书——Build a Large Language Model (From Scratch) 将带你走出这一思维误区!它教会你如何通过一台普通的笔记本电脑来构建大语言模型,轻松实现这看似不可能的目标!
这本书在尚未出版时,已经收获了诸多的关注和推荐,GitHub 上获得了 40.6k 星标,美亚评分更是高达 4.7 分。
自英文版发布以来,图灵迅速获得本书版权,并通过编辑团队的不断努力,终于将这本书呈现给大家!
更棒的是,在纸质版正式上市之前,为了回馈广大读者的热切期盼,我们决定率先开放电子抢读版。让你抢先阅读,第一时间揭开 LLM 的神秘面纱!
这本书到底讲了啥?
《从零构建大模型》是一本超实战、超透彻的 LLM 入门书。作者手把手带你亲手构建、训练、微调一个属于自己的大模型。从数据准备到预训练,从指令微调到模型部署,每一步都讲得清清楚楚,还配有代码、示意图,手把手带你实现。
🔹 从零开始:自己动手构建模型架构!
🔹 模型训练:教你如何准备数据、搭建训练管道,并优化模型效果!
🔹 让 LLM 更聪明:微调、加载预训练权重,让你的 LLM 适应不同任务!
🔹 人类反馈微调(RLHF):让 LLM 学会理解指令,避免胡言乱语!
🔹 轻量级开发:一台普通笔记本就能跑,告别「算力焦虑」!
(本书内容要点导图)
为什么这本书不一样?
❌ 拒绝「调包侠」套路:不依赖任何现成 LLM 库,真正理解底层逻辑。
✔️ 可视化+代码示例:连训练数据准备都拆成「小白操作指南」。
🔥 彩蛋级技巧:用人类反馈优化模型表现,打造更听话、更智能的 AI。
这不仅仅是一本“教科书”,更是一场硬核的 AI 之旅。当你亲手打造一个 LLM 时,黑盒不再是黑盒,你会真正理解大模型的工作原理,构建出属于自己的应用!
作者是谁?
塞巴斯蒂安·拉施卡(Sebastian Raschka),极具影响力的人工智能专家,GitHub 项目 LLMs-from-scratch 的 star 数达 40.6k。
现在大模型独角兽公司 Lightning AI 任资深研究工程师。博士毕业于密歇根州立大学,2018~2023 年威斯康星大学麦迪逊分校助理教授(终身教职),从事深度学习科研和教学。
除本书外,他还写作了畅销书《大模型技术30讲》(图灵即将出版)和《Python机器学习》。
原版读者评价
只需跟着作者一步步操作,相信你一定能掌握构建 LLM 的核心技能,成功构建属于自己的大模型!如果你正在探索如何打造大模型,这本书绝对是你的最佳指南!
新书抢读版重磅上线
抢读版为电子版,每周更新,电子版内容最终会在纸书出版之前完成更新。在此期间大家可以提交勘误,进群一起学习,并对书中内容进行友好交流。
扫描👇海报上👇的二维码,你可以抢先进群,体验新书发布!也可以直接扫码在线试读哟~
更多AI新作,敬请期待!
2025 年图灵为大家准备了超多经典的 AI 图书,后续我们也会陆续给大家上新抢读版,大家可以进群获得最新消息哟!
01
《大模型技术30讲》
塞巴斯蒂安·拉施卡 | 著
叶文滔 | 译
畅销书作者塞巴斯蒂安·拉施卡 (Sebastian Raschka)另一部新作,他擅长将复杂的 AI 相关主题提炼成任何人都可以理解的实用要点。如果你准备好超越介绍性概念并更深入地研究机器学习、深度学习和 AI,那么机器学习 Q 和 AI 的问答形式将让您快速轻松地完成工作,而无需大量繁琐工作。
本书中我们将学习各种新概念,如深度神经网络架构、计算机视觉、自然语言处理、产品化与部署和模型评估,以及区分自注意力与普通注意力,常见文本数据的数据增强技术,各种自监督学习技术,多 GPU 训练范式和各种生成式 AI 等技术。
02
(封面待定)
《百面大模型》
包梦蛟 | 著
大模型工程师面试必备,100 道常见的面试题目和解答一次性总结给你,全书系统全面地介绍了大模型相关的技术,涵盖语义表达、数据处理、预训练、对齐到垂类微调、组件、评估、架构、检索增强生成(RAG)、Agent、PEFT(参数高效微调)以及训练与推理等多方面的内容。
03
《大模型应用开发极简入门(第2 版)》
Olivier Caelen,Marie-Alice Blete | 著
何文斯 | 译
畅销书《大模型应用开发极简入门》升级版。本书为大模型应用开发极简入门手册,为初学者提供了一份清晰、全面的“最小可用知识”,带领大家快速了解 GPT-4 和 ChatGPT 的工作原理及优势,并在此基础上使用流行的 Python 编程语言构建大模型应用。
04
《生成式AI 提示工程权威指南》
James Phoenix,Mike Taylor | 著
孙霄逸 | 译
本书展示如何通过提示工程学习在实际应用中运用大模型。对于初次将 LLM 和扩散模型集成到工作流程中的开发者而言,通常面临的问题是如何让这些模型提供足够可靠的结果,以便应用于自动化系统。作者 James Phoenix 和 Mike Taylor 介绍了一套称为提示工程的原则,帮助您更有效地与 AI 协作。
05
《AI 工程》
Chip Huyen | 著
本书首先概述了人工智能工程,解释了它与传统 ML 工程的区别,并讨论了新的人工智能堆栈。人工智能使用得越多,发生灾难性故障的机会就越多,评估就变得越重要。本书讨论了评估开放式模型的不同方法,包括快速发展的人工智能即评判方法。
06
《大模型实战》
Jay Alammar,Maarten Grootendorst | 著
李博杰 | 译
畅销书 Hands-on 系列新作。本书将为 Python 开发人员提供使用大模型的实用工具和概念,帮助大家掌握实际应用场景。你将学习如何利用预训练的大型语言模型进行文案撰写、文本摘要、语义搜索等任务,构建超越关键词匹配的智能系统。
07
《深度学习入门5:生成模型》
斋藤康毅 | 著
郑明智 | 译
深度学习入门“鱼书”第 5 部,本书的主题是生成模型,目标是带领读者从生成数据的基础开始,最终抵达生成模型的顶点——扩散模型。本书将整个过程分为 10 个步骤,循序渐进。这 10 个步骤组成了一个连续的故事,情节依次展开,在每个步骤,我们都能学到与生成模型相关的重要技术。
08
《走进具身智能》
陈光|著
智能,源于感知、认知与行动的交融。具身智能,正是基于这一理念,让机器摆脱抽象算法的桎梏,去触碰真实的世界。在本书中,你将看到机器如何通过视觉、听觉、触觉去解读环境,如何从模仿到创新,逐渐成长。从机器人学到脑科学,从意识探索到人机融合,作者以通俗生动的笔触,带你领略这一前沿跨学科领域的魅力。无论你是 AI 研究者、机器人技术从业者,还是对科技创新充满好奇的读者,本书都能为你呈现一幅充满想象力的未来图景。跟随作者的思考,拥抱具身智能,让我们共同探寻人机共生的无限可能。
文末福利
留言说出你最想看到哪本书的抢读版,可以是图灵现有的选题,也可以是你看到的好的原版计算机图书,评论区可以留言讨论。我们会在精选留言中选出 1 位,赠送抢读版一份!机会难得呀,快来参与~~