贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。
正如它应用在数学方面,如何让知识成为经验,就给人带来惊喜!
所谓进步,就是积累经验,获取更加正确的知识。每当遇到新信息,我们需要拥有能够改变之前判断的勇气和沉稳的内心。这也是我们从贝叶斯定理中学到的。
来源 | 《用数学的语言看世界(增订版)》
作者:[日] 大栗博司
译者:尤斌斌
01
用数学来“学习经验”
下面我以特殊的骰子为例,来说明学习“经验”是怎么一回事儿。在学校学习概率时,老师们总是强调“虽然前一次掷骰子掷出 1,但是下一次掷骰子掷出任何一面的概率都是不变的”。也就是说,掷两次骰子时,两次的概率是相互独立的。例如,假设不是特殊的骰子,第一次掷出 1 的概率是 1/6,第二次掷出 1 的概率也是 1/6。
不过,如果普通骰子和特殊骰子混在一起,分不清哪个是哪个时,第一次是否掷出 1 会影响第二次的概率。
普通骰子掷出 1 的概率为 1/6,假设特殊骰子掷出 1 的概率为1/2。公式表示如下:
正因为普通骰子和特殊骰子的数量相同,假设手头上普通骰子和特殊骰子的概率是五五开,即
按照以上数据,掷出 1 的概率为
这个公式的导出方法请参考个人主页上的补充说明。因为其中混有容易掷出 1 的骰子,所以掷出 1 的概率为 1/3,大于 1/6。
那么,假设第一次掷出 1,再次掷同一个骰子时,第二次掷出 1 的概率为多少呢?首先要注意的是,第一次是否掷出 1 会改变骰子是否特殊的概率。代入贝叶斯定理的话,
因此,
本来骰子是否特殊的概率为 P(普通) = P(特殊) = 1/2,但是如果第一次掷出 1 的话,那么骰子特殊的概率增至 3/4。
一旦掷出 1,那么骰子中特殊骰子的概率会增加,所以再次掷同一个骰子时,掷出 1 的概率也会增加。计算公式如下:
第一次掷骰子时掷出 1 的概率为 P(掷出 1) = 1/3 ≈ 0.3。不过掷出 1后,再次掷同一个骰子时掷出 1 的概率增加至 P(掷出 1→ 掷出 1) =5/12 ≈ 0.4。知道第一次掷出的是 1 后,骰子属于特殊骰子的概率从1/2 变成 3/4。因此,按照以上数据,下一次掷出 1 的概率从 1/3 更正为 5/12。这就是我所说的运用贝叶斯定理来学习“经验”。
02
核电站重大事故再次发生的概率
这个概率的计算方法与日本人正在面对的重大问题有关。我们有时候必须从不确定的信息中作出判断。例如在福岛第一核电站发生事故之前,据说日本的核电站发生事故的概率极小。但是,这次事故发生后才发现,原来核电站的构造如此复杂,连专家们都无法完全把握其安全性。也没有人准确地算出事故发生的概率到底是多少。这类似于刚才所说的骰子是否特殊,掷出 1 的概率到底是 1/2 还是 1/6。
我在报纸中看到,在这次事故发生之前,东京电力公司向日本政府提交的数据是核电站发生炉心熔融等重大事故的概率为一座核电站在10 000 000 年运行期内会发生 1 次事故。但是,日本开始使用核电站才不过 50 年。目前日本国内差不多有 50 座核电站,再加上最近刚建成的核电站,将核电站数除以运行年数,运行的核电站总计约为 1500座 × 1 年。那么,如果东京电力公司计算的概率正确的话,在过去 50年日本发生重大事故的概率为 1500/10 000 000 = 0.00015。表示如下:
另一方面,反对建造核电站的人们主张要重视发生重大事故的概率。我不知道他们估算的危险性有多高,不过假设他们担心每隔几个世代就会在日本的某地发生一次重大事故的话,难道是每 100 年发生一次吗?如果反核电运动人士主张重视的概率是正确的话,那么在过去 50 年间发生重大事故的概率为 50/100,也就是
如果比喻成特殊骰子,“东京电力公司估算正确”相当于“拿到普通骰子”,“反核电运动估算正确”相当于“拿到特殊骰子”。正如特殊骰子掷出 1 的概率会变高,假设反核电运动的主张正确,那么发生重大事故的概率也同样会变高。
在接下来的计算中,为了计算方便,假设东京电力公司估算的概率和反核电运动人士主张的概率中有一个是正确的。当然,也有一种可能性是东京电力公司和反核电运动人士估算的概率都是错误的,所以这是一个很大的假设。不过我们的目的在于说明贝叶斯定理的使用方法,在这个假定下计算即可。
在事故发生前,很多人都相信东京电力公司的所言。至少允许建造核电站的政府官员判断核电站是安全的。假设相信东京电力公司主张正确的概率为 99%,那么记作:
按照上述数据,计算 50 年之中发生重大核事故的概率为:
换言之,即使反核电运动人士强调 100 年间发生一次事故也很危险,如果他们正确的概率只有 1%,那么在日本国内某处发生重大事故的概率约为 0.005 次,估算为 10 000 年间发生一次。
然而在日本,核电站的运行时间才不过 50 年,就发生了炉心熔融。一旦发生了事故,我们需要重新审视东京电力公司那个正确概率为 99% 的主张。于是,运用贝叶斯定理的话,
因此,
事故发生以后,东京电力公司的主张正确率从 99% 急降为 3%。原因在于东京电力公司主张的事故概率 P(东电 → 事故) 为 0.00015,这个数值极小。虽然主张几乎不会发生事故,既然发生了事故,东京电力公司的主张正确率变低也在情理之中。运用贝叶斯定理,通过数学的语言来表现什么叫作“失去信任”。
那么在事故发生以后,下一次发生事故的概率又是多少呢?如果设备的运行率与事故之前相同的话,那么
反核电运动人士所说的每 50 年发生 0.5 次,也就是每 100 年发生 1 次。为了方便说明贝叶斯定理的使用方法,简单地假设“东京电力公司和反核电运动人士估算的概率中有一个是正确的”。当然,也有一种可能性是东京电力公司和反核电运动人士估算的概率都是错误的。而且,因为 P(反核电 → 事故) = 0.5 或者 P(反核电) = 0.01 等数值是我自己随意计算得出的数字,不能这个按照表面意思来理解这些计算结果。
这次事故发生半年后,大概在 2011 年 10 月 17 日,东京电力公司重新公开发表了福岛第一核电站再次发生炉心熔融的概率,改为每5000 年发生一次。在日本国内约有 50 座核电站,所有核电站重新运行的话,在日本某地发生重大事故的概率为每几百年发生 1 次。
当我们获取新信息,只要根据这些新信息来修改概率,就可以降低不确定性。这就是学习“经验”。继续使用核电站存在风险。另一方面,对于依赖大量进口化石燃料的日本来说,停止运行核电站同样存在风险。
而且,当然还要考虑化石燃料对地球气候变化的影响。比较各方面的风险后再作判断,也就是说,计算风险需要正确理解概率。
所谓进步,就是积累经验,获取更加正确的知识。每当遇到新信息,我们需要拥有能够改变之前判断的勇气和沉稳的内心。这也是我们从贝叶斯定理中学到的。
推荐阅读
《用数学的语言看世界(增订版)》
作者:[日] 大栗博司
译者:尤斌斌
美国加州理工学院理论物理研究所所长,日本东京大学Kavli数学物理学联合宇宙研究机构研究主任 大栗博司 教授
突破传统数学教育教学顺序、方式 / 以“语言思维”讲解数学核心概念、原理 / 回归“基本原理”重新认识数学本质
02
《贝叶斯的博弈:数学、思维与人工智能》
作者:黄黎原
译者:方弦
法国数学类科普书、大学数学参考及教材类图书畅销书目,在机器学习、人工智能、逻辑学和哲学等众多领域中,探索贝叶斯定理蕴藏的智慧与哲理。
贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。
02
《趣学贝叶斯统计:橡皮鸭、乐高和星球大战中的统计学》
作者:[美] 威尔·库尔特(Will Kurt)
译者:王凌云
本书用十余个趣味十足、脑洞大开的例子,将贝叶斯统计的原理和用途娓娓道来。你将从直觉出发,自然而然地习得数学思维。读完本书,你会发现自己开始从概率角度思考每一个问题,并能坦然面对不确定性,做出更好的决策。