67.图像的形态学梯度

 目录

        1 概念讲解及用处

        2 API函数详解

        3 用C++编写代码进行实现

        1 概念讲解及用处

        形态学梯度是形态学操作中的一种,用于提取图像中物体边缘或轮廓的信息。它通过计算膨胀和腐蚀操作之间的差异来获取物体边界的强度变化情况。

        形态学梯度常用于突出高亮区域的外围、为轮廓查找提供新思路、边缘检测、形状分析和物体定位等应用场景。

        形态学梯度分为:

  1. 内梯度(Internal Gradient):指的是通过腐蚀操作得到的图像与原始图像之间的差异。内梯度可以用于检测物体的边界。
  2. 外梯度(External Gradient):指的是通过膨胀操作得到的图像与原始图像之间的差异。外梯度可以用于扩展物体的边界。
  3. 基本梯度(Basic Gradient):也称为形态学梯度(Morphological Gradient),是通过膨胀和腐蚀操作之间的差异来计算得到的图像。基本梯度可以提取物体的轮廓信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值