雷达信号(LFM、OFDM、LFM-Barker、Costas-Barker、Costas-M、交错Costas-M)模糊函数
雷达模糊函数表示匹配滤波器输出的模,它描述当与RCS相等的参考目标相比时,由目标的距离和或多普勒引起的干扰。当 ( τ , f d ) = ( 0 , 0 ) (\tau,f_d)=(0,0) (τ,fd)=(0,0)时,模糊函数的值等于与感兴趣目标反射的信号理想匹配时的匹配滤波器的输出。换言之,来自标称目标的回波位于模糊函数的原点。于是,非零 τ \tau τ和 f d f_d fd时的模糊函数表示与标称目标有一些距离和多普勒不同的目标函数。
模糊函数的具体公式为:
∣ X ( τ , f d ) ∣ 2 = ∣ ∫ − ∞ + ∞ x ( t ) x ∗ ( t − τ ) e j 2 π f d t 2 d t ∣ 2 | X(\tau,f_d)|^2=| \int_{- \infty}^{+ \infty} {x(t)x^{*}(t-\tau)}e^{{j2\pi f_dt}^2} dt|^2 ∣X(τ,fd)∣2=∣∫−∞+∞x(t)x∗(t−τ)ej2πfdt2dt∣2
雷达设计师们通常将雷达模糊函数用做一种研究各种不同波形的手段。通过该函数可以看出,各种不同的雷达波形是如何适用于各种雷达的应用。
单脉冲模糊函数
∣
X
(
τ
,
f
d
)
∣
2
=
∣
(
1
−
∣
τ
∣
τ
0
)
s
i
n
(
π
f
d
(
τ
0
−
∣
τ
∣
)
)
π
f
d
(
τ
0
−
∣
τ
∣
)
∣
2
| X(\tau,f_d)|^2=| (1-\frac{|\tau|}{\tau_0})\frac{sin(\pi f_d(\tau_0 - |\tau|))}{\pi f_d(\tau_0-|\tau|)}|^2
∣X(τ,fd)∣2=∣(1−τ0∣τ∣)πfd(τ0−∣τ∣)sin(πfd(τ0−∣τ∣))∣2
LFM模糊函数
∣
X
(
τ
,
f
d
)
∣
2
=
∣
(
1
−
∣
τ
∣
τ
0
)
s
i
n
(
π
τ
0
(
μ
τ
+
f
d
)
(
1
−
∣
τ
∣
τ
0
)
)
π
τ
0
(
μ
τ
−
f
d
)
(
1
−
∣
τ
∣
τ
0
)
∣
2
| X(\tau,f_d)|^2=| (1-\frac{|\tau|}{\tau_0})\frac{sin(\pi \tau_0(\mu\tau + f_d) (1-\frac{|\tau|}{\tau_0}))}{\pi \tau_0(\mu \tau-f_d)(1-\frac{|\tau|}{\tau_0})}|^2
∣X(τ,fd)∣2=∣(1−τ0∣τ∣)πτ0(μτ−fd)(1−τ0∣τ∣)sin(πτ0(μτ+fd)(1−τ0∣τ∣))∣2
OFDM信号模糊函数
OFDM信号由多路彼此正交信号构成,其受相位编码调制,因此需套用原始公式进行仿真,仿真结果如下
LFM-Barker模糊函数
Costas-Barker模糊函数
Costas-M序列模糊函数
交错Costas-M序列模糊函数