雷达回波模拟仿真(一):回波产生,脉冲压缩(以LFM为例)matlab

本文详细介绍了雷达回波的构成,重点讲解了LFM线性调频信号下目标回波的产生过程,包括后向散射信号处理和脉冲压缩技术的应用。通过Matlab代码实例,学生可以理解雷达信号处理的关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

雷达回波模拟仿真(一):回波产生,脉冲压缩(以LFM为例)matlab

雷达目标回波

首先介绍雷达目标回波的组成结构,然后再通过代码的方式,让学生对目标回波的产生有个深入的认识。
在这里插入图片描述
雷达接收的回波可以是目标前向散射的,也可以是后向散射的,后向散射通常为双多基地雷达特有的。
雷达接收的信号可以表示为
  x ( t ) = S ( t ) + N ( t ) + C ( t ) + J ( t ) \ x(t) = S(t)+N(t)+C(t) +J(t)  x(t)=S(t)+N(t)+C(t)+J(t)
其中, S ( t ) S(t) S(t)表示目标的后向散射回波, N ( t ) N(t) N(t)表示噪声, C ( t ) C(t) C(t)表示为杂波, J ( t ) J(t) J(t)表示干扰
在这里插入图片描述
下图中,30m处的不同颜色表示风速造成的摆动不一的草堆,因此,在距离方位平面呢,可以看到,草堆在距离速度平面上应该也是展宽分布的,人在某个距离单元与某个速度单元的相交位置处。因此接收到的信号应该是草堆的散射信号和人的信号的和,即
  x = ∑ i J s ( t − τ i ) + s ( t − τ 0 ) \ x=\sum_{i}^Js(t-\tau_i)+s(t-\tau_0)  x=iJs(tτi)+s(tτ0)
其中, τ 0 \tau_0 τ0表示人所在的单元, τ i \tau_i τi表示第 i i i个草堆的散射延迟,J表示草堆的摆动速度有J个等级。
在这里插入图片描述

雷达目标回波脉冲压缩

这里主要将接收信号中的 S ( t ) S(t) S(t)、后续会依次将介绍杂波、干扰
以LFM线性调频信号为例,目标回波表达式为:
在这里插入图片描述
在产生回波的时候,通常有两种做法,一种是通过计算目标距离所在的位置,折合成采样点数,然后将发射信号按照采样点数直接搬移到所在的位置,这种情况下,接收信号的第一个点的相位和发射信号的第一个点的相位是一样的,其实,按照波的传播来说,他由初始位置运动到目标所在位置时,其第一个点碰到目标的初始相位并不一定和发射信号的初始相位一致,所以雷达通常是通过发射信号的基准晶振来判断接收到的信号的时间延迟,将这个时间延迟对应的相位补偿后,就可以实现接收信号的第一个点的相位和发射信号的初始相位一样了。在仿真的过程中,没有必要针对这个问题进行深究,可以直接产生混频后的接收信号。

脉冲压缩

匹配滤波器(Match filter,MF)是当输入端为信号与加性白噪声时,使其输出信噪比最大的滤波器,就是一个与输入信号相匹配的最佳滤波器。
目标回波通过匹配滤波器能够获得最大信噪比输出,这样可以获取目标距离。

雷达目标回波脉冲压缩仿真

目标距离设置为:121000m
(1)回波信号
在这里插入图片描述
(2)脉压结果
在这里插入图片描述

代码

// An highlighted block
clc;clear all;close all
c=3e8;          %光速
% LFM信号的参数
f0=10e9;
Tp=10e-6;       %发射信号脉冲宽度
B=30e6;         %发射信号带宽
mu=B/Tp;       %调频率
fs= 5*B;        %采样频率
Tr=1e-3;        %发射信号脉冲重复周期
Rmin = 10e3;    %最近距离  % Rmin = Tp/2*c;  %理论上探测的最近距离 
Rmax = 25e3;    %最远距离  % Rmax = (Tr-Tp/2)*c;%理论上探测的最远距离
Tstar= 2*Rmin/c;  
Tend= 2*Rmax/c;   % Tstar和Tend分别表示采样时间的起始时刻
%  产生时间序列
t=Tstar: 1/fs: Tend-1/fs;   % 采样过程的时间序列
% 探测的距离范围
Rwin= linspace(Rmin, Rmax, length(t))-0.25*c*Tp;  % 切记要减去半个脉宽的距离
% 具体原理可参考第7讲雷达目标回波模拟的课件
% 单个目标的参数
R0=12.1e3 ;      %目标的初始距离
%  产生单个目标的接收信号
tao = 2*R0/c;   %  tao表示的目标的时延量
td = t-tao ;
Echo = exp(j*2*pi*(-f0*tao+0.5*mu*td.^2)).*(abs(td)<Tp/2); 
figure(1), plot(t, real(Echo),'g-*');
xlabel('time/s');ylabel('amplitude'); axis([t(1) t(end) -1.2 1.2]);

雷达信号处理中,Swerling模型对于描述目标在不同时间或视角下的雷达截面积(RCS)起伏变化非常有效。Swerling模型可以模拟四种不同的RCS起伏情况,从而提供对目标散射特性的深入理解。而线性同余法是种简单而高效的生成均匀分布随机序列的方法,适用于模拟雷达系统中的随机噪声和杂波。具体操作步骤和代码示如下: 参考资源链接:[雷达信号建模与仿真研究:Swerling模型与杂波仿真](https://wenku.csdn.net/doc/241jr7idjh?spm=1055.2569.3001.10343) 1. 首先,确定要模拟的目标类型和对应的Swerling模型参数。如,对于Swerling I模型,RCS的起伏遵循指数分布,而Swerling II模型则采用联合高斯分布。 2. 使用线性同余法生成均匀分布的随机序列。线性同余法的迭代公式为: X_{n+1} = (aX_n + c) mod m 其中,X是序列中的数,a、c、m是选定的常数,满足线性同余方程的特定要求。 3. 通过编程实现线性同余法生成随机数序列,并将这些随机数作为RCS的起伏值,计算目标回波信号。个简单的Python代码示为: ```python def linear_congruential_generator(a, c, m, seed, n): random_sequence = [] X = seed for _ in range(n): X = (a * X + c) % m random_sequence.append(X / m) # Normalize to [0,1] return random_sequence # 使用线性同余法生成随机序列 a = 1664525 c = *** m = 2**32 seed = 1 n = 1000 # 模拟1000个雷达回波信号 RCS起伏序列 = linear_congruential_generator(a, c, m, seed, n) ``` 4. 利用Swerling模型的数学表达式和生成的RCS起伏序列,计算每个时间点上的雷达回波信号幅度和相位。这通常涉及到信号模型的仿真,其中回波信号的表达式可能包含时间变量和目标的运动状态。 5. 为了得到更加精确的回波信号,可能还需要考虑成形滤波器的设计,以模拟雷达发射和接收过程中的信号波形特性。 通过上述步骤,我们可以利用Swerling模型和线性同余法生成模拟的雷达回波信号。为了深入理解Swerling模型在雷达截面积起伏分析中的应用,以及线性同余法在随机序列生成中的重要性,建议读者参阅《雷达信号建模与仿真研究:Swerling模型与杂波仿真》这篇硕士学位论文。论文详细介绍了相关理论、算法实现及仿真技术,是理解和实践雷达信号建模与仿真的宝贵资源。 参考资源链接:[雷达信号建模与仿真研究:Swerling模型与杂波仿真](https://wenku.csdn.net/doc/241jr7idjh?spm=1055.2569.3001.10343)
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

突突突凸凸凸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值