SSD网络

  • two-stage:以R-CNN系列为代表,这类方法通常包括两个部分,第一部分先使用selective search、卷积神经网络等筛选出一些proposal boxes,然后第二部分再对这些proposal boxes进行分类和回归。这就相当于进行了两次分类和回归,因此检测的准确率较高,但是可想而知检测的速度也就比较慢了。
  • one-stage:以YOLO为代表,这类方法的主要思路就是在图片的不同位置进行密集采样,然后使用CNN网络提取特征并直接进行分类和回归,整个过程只要一步就可完成。这种方法的优势是检测速度快,但是检测的准确率却不是很高。

特点:

1. 也是一阶段的网络,即

2. SSD将每次卷积得到的特征图(feature map)都进行检测,即基于特征金字塔(Pyramidal Feature Hierarchy)的检测方式参考

3. 一次完成目标定位与分类,但是对特征图(feature map)进行卷积来检测目标。不是YOLOV1的全连接层,会丢失很多空间的信息。

4. 引入先验框(Prior Box) 这些特征图层上面的每一个点构造6个不同尺度大小的先验框,

5. 将所有特征图上得到的输出结合起来,最后通过NMS得到检测结果。

这是通过观察 SSD 网络结构得出的大概流程。

 细节:

 1. 损失函数

损失函数是 交叉熵 + Smooth L1 loss,一个分类,一个回归边框位置,参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

往事如yan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值