目标检测预处理分析(列表样本分布,GT可视化)preprocessing

本文探讨目标检测预处理的两个关键任务:分析类别数量的均衡度,通过直方图或柱状图进行可视化;以及将Ground Truth(GT)标注显示在图像上,以检查样本分布。作者分享了遇到的问题,如安全帽标签错误导致训练问题,揭示了类别样本不均衡的挑战。提供已修复的Python代码片段用于处理图像和XML文件。
摘要由CSDN通过智能技术生成
s

目标检测预处理分析有两个任务:

  1. 所有类别数量的均衡度分析(直方图或者柱状图可视化)

  2. 把GT画在每一张对应的图片上,并在另外一个文件里保存

 

 

所有类别数量的均衡度分析(直方图或者柱状图可视化)

python:批量统计xml中各类目标的数量_Python

Python对目标检测数据集xml文件操作(统计目标种类、数量、面积、比例等&修改目标名字)

系统环境为ubuntu16.04

编译器为python2.7

模块中的函数需要添入三个变量,分别为待处理图像的文件夹路径,xml文件夹路径,处理后图像的文件夹路径

以下代码已经被我改完bug跑通:

# -*- coding:utf-8 -*-
# 根据xml文件统计目标种类以及数量
import os
import xml.etree.ElementTree as ET
import numpy as np

np.s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

往事如yan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值