1070 动态规划入门(二维一边推3:字符距离)

真·题外话)还有七天NOIP了,祝大家rp++,写点动态规划复习复习。

1070 动态规划入门(二维一边推3:字符距离)

时间限制: 1 Sec 内存限制: 128 MB

【问题描述】

设有字符串X,我们称在X的头尾及中间插入任意多个空格后构成的新字符串为X的扩展串,如字符串X为“abcbcd”,则字符串“abcb□cd”,“□a□bcbcd□”和“abcb□cd□”都是X的扩展串,这里“□”代表空格字符。

如果A1是字符串A的扩展串,B1是字符串B的扩展串,A1与B1具有相同的长度,那么我们定义字符串A1与B1的距离为相应位置上的字符的距离总和,而两个非空格字符的距离定义为它们的ASCII码的差的绝对值,而空格字符与其它任意字符之间的距离为已知的定值K,空格字符与空格字符的距离为O。在字符串A、B的所有扩展串中,必定存在两个等长的扩展串A1、B1,使得A1与B1之间的距离达到最小,我们将这一距离定义为字符串A、B的距离。

请你写一个程序,求出字符串A、B的距离。

【输入文件】

输入文件第一行为字符串A,第二行为字符串B,A、B均由小写字母组成且长度均不超过2000,第三行为一个整数K,1≤K≤100,表示空格与其它字符的距离。

【输出文件】

输出文件仅一行包含一个整数,表示要求的字符串A、B的距离

样例输入
cmc
snmn
2
样例输出
10

ps:虽然有视频,但感觉只是照着程序念了一遍。

*Solution

字符串的距离要么是空格之间,要么是字符与字符之间,要么是空格与字符之间,插入适量空格让距离最小,已经编辑好的距离又不对后面距离产生变化,不禁想到了动态规划。

我们用一个二维数组f[i][j]来表示字符串间距离,其中以i为结尾和到j结尾的序列长度的最小值。

如果比较一个n长度与m长度的字符串,求f[i][j]的值,根据我们上面分出的三种情况可以归结为
1.f[i][j]:=f[i-1][j-1]+abs(ord(s[i])-ord(s[j]));
表示前f[i-1][j-1]加上第i为与第j为的字母间的差值
2.f[i][j]:=f[i-1][j]+k;
第j位字符与第i位空格对应
3.f[i][j]:=f[i][j-1]+k;
第i位字符与第j位空格对应
然后我们再取他们的最小值。
(别忘了初始化,见程序,先都为空格)

 状态转移方程为↓
 f[i,j]=min{min{f[i-1,j]+k,f[i,j-1]+k},abs(ord(s1[i])-ord(s2[j]))+f[i-1][j-1]};

CODE

var
  f:array[0..2100,1..2100]of longint;
  s1,s2:string;
  i,j,k,len1,len2:longint;
function min(p,q:longint):longint;
begin
  if p>q then exit(q)
  else exit(p);
end;

begin

  readln(s1);len1:=length(s1);
  readln(s2);len2:=length(s2);
  readln(k);
  f[0,0]:=0;
  for i:=1 to len1 do f[i][0]:=k*i;
  for j:=1 to len2 do f[0][j]:=k*j;//初始化

  for i:=1 to len1 do
  for j:=1 to len2 do
  begin
    f[i,j]:=min(min(f[i-1,j]+k,f[i,j-1]+k),abs(ord(s1[i])-ord(s2[j]))+f[i-1][j-1]);
  end;

  writeln(f[len1][len2]);

end.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值