图像处理:图像中噪声分布和概率密度函数的关系

学习笔记:数字图像处理——图像中噪声分布概率密度函数的关系

 

学习的时候,看到各种噪声,高斯、锐利、伽马、均匀等。每个分布有概率密度函数,而这个和噪声有啥具体的连接的关系,我不是很懂,稍微研究了一下,要点如下:

 

例如下图高斯噪声的概率密度函数:

z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方为z的方差。

 

Z不一定要和原图像的范围一致,例如应该可以是0-10

 

 

我理解:噪声本身和图像内容无关。

假设产生均值为20,标准差为10,大小为256*256

Noise = 20 + 10*randn(256);

hist(Noise,100);%直方图

也就是说,

这个256*256个点的每一个点的灰度值是20的概率最大,是20之外的其他数值的概率逐渐减小。所以整副噪声图像的出现灰度值为20左右的数量是最多的

再加到原图像上。

 

噪声我参考:

和冈萨雷斯书上一样的

https://blog.csdn.net/zhougynui/article/details/51764798

理解噪声的函数和噪声图像的关系 C++

https://blog.csdn.net/u012936765/article/details/53200918

Matlab添加噪声,滤波

https://blog.csdn.net/wulafly/article/details/53225269

matlab给数字图像加高斯白噪声的几种方法

https://blog.csdn.net/liuyingying0418/article/details/79432962
数字图像处理之椒盐噪声和中值滤波 C++

https://blog.csdn.net/tsfx051435adsl/article/details/78251739

发布了49 篇原创文章 · 获赞 41 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览