三倍角公式推导过程如下:
目标
推导三倍角公式:
cos
(
3
θ
)
=
4
cos
3
(
θ
)
−
3
cos
(
θ
)
\cos(3\theta)=4\cos^3(\theta)-3\cos(\theta)
cos(3θ)=4cos3(θ)−3cos(θ)
sin
(
3
θ
)
=
3
sin
(
θ
)
−
4
sin
3
(
θ
)
\sin(3\theta)=3\sin(\theta)-4\sin^3(\theta)
sin(3θ)=3sin(θ)−4sin3(θ)
推导过程
1. 使用加法公式
根据三角函数加法公式:
cos
(
a
+
b
)
=
cos
(
a
)
cos
(
b
)
−
sin
(
a
)
sin
(
b
)
\cos(a+b)=\cos(a)\cos(b)-\sin(a)\sin(b)
cos(a+b)=cos(a)cos(b)−sin(a)sin(b)
令
b
=
2
θ
b=2\theta
b=2θ,于是:
cos
(
3
θ
)
=
cos
(
θ
+
2
θ
)
=
cos
(
θ
)
cos
(
2
θ
)
−
sin
(
θ
)
sin
(
2
θ
)
\cos(3\theta)=\cos(\theta+2\theta)=\cos(\theta)\cos(2\theta)-\sin(\theta)\sin(2\theta)
cos(3θ)=cos(θ+2θ)=cos(θ)cos(2θ)−sin(θ)sin(2θ)
2. 代入二倍角公式
二倍角公式:
cos
(
2
θ
)
=
2
cos
2
(
θ
)
−
1
\cos(2\theta)=2\cos^2(\theta)-1
cos(2θ)=2cos2(θ)−1
sin
(
2
θ
)
=
2
sin
(
θ
)
cos
(
θ
)
\sin(2\theta)=2\sin(\theta)\cos(\theta)
sin(2θ)=2sin(θ)cos(θ)
将它们代入上述公式:
cos
(
3
θ
)
=
cos
(
θ
)
(
2
cos
2
(
θ
)
−
1
)
−
sin
(
θ
)
(
2
sin
(
θ
)
cos
(
θ
)
)
\cos(3\theta)=\cos(\theta)(2\cos^2(\theta)-1)-\sin(\theta)(2\sin(\theta)\cos(\theta))
cos(3θ)=cos(θ)(2cos2(θ)−1)−sin(θ)(2sin(θ)cos(θ))
3. 整理公式
展开后:
cos
(
3
θ
)
=
2
cos
3
(
θ
)
−
cos
(
θ
)
−
2
sin
2
(
θ
)
cos
(
θ
)
\cos(3\theta)=2\cos^3(\theta)-\cos(\theta)-2\sin^2(\theta)\cos(\theta)
cos(3θ)=2cos3(θ)−cos(θ)−2sin2(θ)cos(θ)
利用恒等式
sin
2
(
θ
)
=
1
−
cos
2
(
θ
)
\sin^2(\theta)=1-\cos^2(\theta)
sin2(θ)=1−cos2(θ)替换
sin
2
(
θ
)
\sin^2(\theta)
sin2(θ):
cos
(
3
θ
)
=
2
cos
3
(
θ
)
−
cos
(
θ
)
−
2
(
1
−
cos
2
(
θ
)
)
cos
(
θ
)
\cos(3\theta)=2\cos^3(\theta)-\cos(\theta)-2(1-\cos^2(\theta))\cos(\theta)
cos(3θ)=2cos3(θ)−cos(θ)−2(1−cos2(θ))cos(θ)
继续展开:
cos
(
3
θ
)
=
2
cos
3
(
θ
)
−
cos
(
θ
)
−
2
cos
(
θ
)
+
2
cos
3
(
θ
)
\cos(3\theta)=2\cos^3(\theta)-\cos(\theta)-2\cos(\theta)+2\cos^3(\theta)
cos(3θ)=2cos3(θ)−cos(θ)−2cos(θ)+2cos3(θ)
合并同类项:
cos
(
3
θ
)
=
4
cos
3
(
θ
)
−
3
cos
(
θ
)
\cos(3\theta)=4\cos^3(\theta)-3\cos(\theta)
cos(3θ)=4cos3(θ)−3cos(θ)
推导三倍角公式的正弦形式
同样地,我们利用加法公式:
sin
(
a
+
b
)
=
sin
(
a
)
cos
(
b
)
+
cos
(
a
)
sin
(
b
)
\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
令
b
=
2
θ
b=2\theta
b=2θ,得到:
sin
(
3
θ
)
=
sin
(
θ
+
2
θ
)
=
sin
(
θ
)
cos
(
2
θ
)
+
cos
(
θ
)
sin
(
2
θ
)
\sin(3\theta)=\sin(\theta+2\theta)=\sin(\theta)\cos(2\theta)+\cos(\theta)\sin(2\theta)
sin(3θ)=sin(θ+2θ)=sin(θ)cos(2θ)+cos(θ)sin(2θ)
代入二倍角公式:
cos
(
2
θ
)
=
2
cos
2
(
θ
)
−
1
,
sin
(
2
θ
)
=
2
sin
(
θ
)
cos
(
θ
)
\cos(2\theta)=2\cos^2(\theta)-1,\quad\sin(2\theta)=2\sin(\theta)\cos(\theta)
cos(2θ)=2cos2(θ)−1,sin(2θ)=2sin(θ)cos(θ)
因此:
sin
(
3
θ
)
=
sin
(
θ
)
(
2
cos
2
(
θ
)
−
1
)
+
cos
(
θ
)
(
2
sin
(
θ
)
cos
(
θ
)
)
\sin(3\theta)=\sin(\theta)(2\cos^2(\theta)-1)+\cos(\theta)(2\sin(\theta)\cos(\theta))
sin(3θ)=sin(θ)(2cos2(θ)−1)+cos(θ)(2sin(θ)cos(θ))
展开:
sin
(
3
θ
)
=
2
sin
(
θ
)
cos
2
(
θ
)
−
sin
(
θ
)
+
2
cos
(
θ
)
sin
(
θ
)
cos
(
θ
)
\sin(3\theta)=2\sin(\theta)\cos^2(\theta)-\sin(\theta)+2\cos(\theta)\sin(\theta)\cos(\theta)
sin(3θ)=2sin(θ)cos2(θ)−sin(θ)+2cos(θ)sin(θ)cos(θ)
整理:
sin
(
3
θ
)
=
2
sin
(
θ
)
cos
2
(
θ
)
+
2
sin
(
θ
)
cos
2
(
θ
)
−
sin
(
θ
)
\sin(3\theta)=2\sin(\theta)\cos^2(\theta)+2\sin(\theta)\cos^2(\theta)-\sin(\theta)
sin(3θ)=2sin(θ)cos2(θ)+2sin(θ)cos2(θ)−sin(θ)
合并同类项:
sin
(
3
θ
)
=
4
sin
(
θ
)
cos
2
(
θ
)
−
sin
(
θ
)
\sin(3\theta)=4\sin(\theta)\cos^2(\theta)-\sin(\theta)
sin(3θ)=4sin(θ)cos2(θ)−sin(θ)
利用
cos
2
(
θ
)
=
1
−
sin
2
(
θ
)
\cos^2(\theta)=1-\sin^2(\theta)
cos2(θ)=1−sin2(θ):
sin
(
3
θ
)
=
4
sin
(
θ
)
(
1
−
sin
2
(
θ
)
)
−
sin
(
θ
)
\sin(3\theta)=4\sin(\theta)(1-\sin^2(\theta))-\sin(\theta)
sin(3θ)=4sin(θ)(1−sin2(θ))−sin(θ)
展开:
sin
(
3
θ
)
=
4
sin
(
θ
)
−
4
sin
3
(
θ
)
−
sin
(
θ
)
\sin(3\theta)=4\sin(\theta)-4\sin^3(\theta)-\sin(\theta)
sin(3θ)=4sin(θ)−4sin3(θ)−sin(θ)
合并同类项:
sin
(
3
θ
)
=
3
sin
(
θ
)
−
4
sin
3
(
θ
)
\sin(3\theta)=3\sin(\theta)-4\sin^3(\theta)
sin(3θ)=3sin(θ)−4sin3(θ)
总结
三倍角公式为:
cos
(
3
θ
)
=
4
cos
3
(
θ
)
−
3
cos
(
θ
)
\cos(3\theta)=4\cos^3(\theta)-3\cos(\theta)
cos(3θ)=4cos3(θ)−3cos(θ)
sin
(
3
θ
)
=
3
sin
(
θ
)
−
4
sin
3
(
θ
)
\sin(3\theta)=3\sin(\theta)-4\sin^3(\theta)
sin(3θ)=3sin(θ)−4sin3(θ)