三倍角公式及其推导过程

三倍角公式推导过程如下:

目标

推导三倍角公式:
cos ⁡ ( 3 θ ) = 4 cos ⁡ 3 ( θ ) − 3 cos ⁡ ( θ ) \cos(3\theta)=4\cos^3(\theta)-3\cos(\theta) cos(3θ)=4cos3(θ)3cos(θ)
sin ⁡ ( 3 θ ) = 3 sin ⁡ ( θ ) − 4 sin ⁡ 3 ( θ ) \sin(3\theta)=3\sin(\theta)-4\sin^3(\theta) sin(3θ)=3sin(θ)4sin3(θ)


推导过程

1. 使用加法公式

根据三角函数加法公式:
cos ⁡ ( a + b ) = cos ⁡ ( a ) cos ⁡ ( b ) − sin ⁡ ( a ) sin ⁡ ( b ) \cos(a+b)=\cos(a)\cos(b)-\sin(a)\sin(b) cos(a+b)=cos(a)cos(b)sin(a)sin(b)
b = 2 θ b=2\theta b=2θ,于是:
cos ⁡ ( 3 θ ) = cos ⁡ ( θ + 2 θ ) = cos ⁡ ( θ ) cos ⁡ ( 2 θ ) − sin ⁡ ( θ ) sin ⁡ ( 2 θ ) \cos(3\theta)=\cos(\theta+2\theta)=\cos(\theta)\cos(2\theta)-\sin(\theta)\sin(2\theta) cos(3θ)=cos(θ+2θ)=cos(θ)cos(2θ)sin(θ)sin(2θ)

2. 代入二倍角公式

二倍角公式:
cos ⁡ ( 2 θ ) = 2 cos ⁡ 2 ( θ ) − 1 \cos(2\theta)=2\cos^2(\theta)-1 cos(2θ)=2cos2(θ)1
sin ⁡ ( 2 θ ) = 2 sin ⁡ ( θ ) cos ⁡ ( θ ) \sin(2\theta)=2\sin(\theta)\cos(\theta) sin(2θ)=2sin(θ)cos(θ)
将它们代入上述公式:
cos ⁡ ( 3 θ ) = cos ⁡ ( θ ) ( 2 cos ⁡ 2 ( θ ) − 1 ) − sin ⁡ ( θ ) ( 2 sin ⁡ ( θ ) cos ⁡ ( θ ) ) \cos(3\theta)=\cos(\theta)(2\cos^2(\theta)-1)-\sin(\theta)(2\sin(\theta)\cos(\theta)) cos(3θ)=cos(θ)(2cos2(θ)1)sin(θ)(2sin(θ)cos(θ))

3. 整理公式

展开后:
cos ⁡ ( 3 θ ) = 2 cos ⁡ 3 ( θ ) − cos ⁡ ( θ ) − 2 sin ⁡ 2 ( θ ) cos ⁡ ( θ ) \cos(3\theta)=2\cos^3(\theta)-\cos(\theta)-2\sin^2(\theta)\cos(\theta) cos(3θ)=2cos3(θ)cos(θ)2sin2(θ)cos(θ)

利用恒等式 sin ⁡ 2 ( θ ) = 1 − cos ⁡ 2 ( θ ) \sin^2(\theta)=1-\cos^2(\theta) sin2(θ)=1cos2(θ)替换 sin ⁡ 2 ( θ ) \sin^2(\theta) sin2(θ)
cos ⁡ ( 3 θ ) = 2 cos ⁡ 3 ( θ ) − cos ⁡ ( θ ) − 2 ( 1 − cos ⁡ 2 ( θ ) ) cos ⁡ ( θ ) \cos(3\theta)=2\cos^3(\theta)-\cos(\theta)-2(1-\cos^2(\theta))\cos(\theta) cos(3θ)=2cos3(θ)cos(θ)2(1cos2(θ))cos(θ)

继续展开:
cos ⁡ ( 3 θ ) = 2 cos ⁡ 3 ( θ ) − cos ⁡ ( θ ) − 2 cos ⁡ ( θ ) + 2 cos ⁡ 3 ( θ ) \cos(3\theta)=2\cos^3(\theta)-\cos(\theta)-2\cos(\theta)+2\cos^3(\theta) cos(3θ)=2cos3(θ)cos(θ)2cos(θ)+2cos3(θ)

合并同类项:
cos ⁡ ( 3 θ ) = 4 cos ⁡ 3 ( θ ) − 3 cos ⁡ ( θ ) \cos(3\theta)=4\cos^3(\theta)-3\cos(\theta) cos(3θ)=4cos3(θ)3cos(θ)


推导三倍角公式的正弦形式

同样地,我们利用加法公式:
sin ⁡ ( a + b ) = sin ⁡ ( a ) cos ⁡ ( b ) + cos ⁡ ( a ) sin ⁡ ( b ) \sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b) sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
b = 2 θ b=2\theta b=2θ,得到:
sin ⁡ ( 3 θ ) = sin ⁡ ( θ + 2 θ ) = sin ⁡ ( θ ) cos ⁡ ( 2 θ ) + cos ⁡ ( θ ) sin ⁡ ( 2 θ ) \sin(3\theta)=\sin(\theta+2\theta)=\sin(\theta)\cos(2\theta)+\cos(\theta)\sin(2\theta) sin(3θ)=sin(θ+2θ)=sin(θ)cos(2θ)+cos(θ)sin(2θ)

代入二倍角公式:
cos ⁡ ( 2 θ ) = 2 cos ⁡ 2 ( θ ) − 1 , sin ⁡ ( 2 θ ) = 2 sin ⁡ ( θ ) cos ⁡ ( θ ) \cos(2\theta)=2\cos^2(\theta)-1,\quad\sin(2\theta)=2\sin(\theta)\cos(\theta) cos(2θ)=2cos2(θ)1,sin(2θ)=2sin(θ)cos(θ)
因此:
sin ⁡ ( 3 θ ) = sin ⁡ ( θ ) ( 2 cos ⁡ 2 ( θ ) − 1 ) + cos ⁡ ( θ ) ( 2 sin ⁡ ( θ ) cos ⁡ ( θ ) ) \sin(3\theta)=\sin(\theta)(2\cos^2(\theta)-1)+\cos(\theta)(2\sin(\theta)\cos(\theta)) sin(3θ)=sin(θ)(2cos2(θ)1)+cos(θ)(2sin(θ)cos(θ))

展开:
sin ⁡ ( 3 θ ) = 2 sin ⁡ ( θ ) cos ⁡ 2 ( θ ) − sin ⁡ ( θ ) + 2 cos ⁡ ( θ ) sin ⁡ ( θ ) cos ⁡ ( θ ) \sin(3\theta)=2\sin(\theta)\cos^2(\theta)-\sin(\theta)+2\cos(\theta)\sin(\theta)\cos(\theta) sin(3θ)=2sin(θ)cos2(θ)sin(θ)+2cos(θ)sin(θ)cos(θ)

整理:
sin ⁡ ( 3 θ ) = 2 sin ⁡ ( θ ) cos ⁡ 2 ( θ ) + 2 sin ⁡ ( θ ) cos ⁡ 2 ( θ ) − sin ⁡ ( θ ) \sin(3\theta)=2\sin(\theta)\cos^2(\theta)+2\sin(\theta)\cos^2(\theta)-\sin(\theta) sin(3θ)=2sin(θ)cos2(θ)+2sin(θ)cos2(θ)sin(θ)

合并同类项:
sin ⁡ ( 3 θ ) = 4 sin ⁡ ( θ ) cos ⁡ 2 ( θ ) − sin ⁡ ( θ ) \sin(3\theta)=4\sin(\theta)\cos^2(\theta)-\sin(\theta) sin(3θ)=4sin(θ)cos2(θ)sin(θ)

利用 cos ⁡ 2 ( θ ) = 1 − sin ⁡ 2 ( θ ) \cos^2(\theta)=1-\sin^2(\theta) cos2(θ)=1sin2(θ)
sin ⁡ ( 3 θ ) = 4 sin ⁡ ( θ ) ( 1 − sin ⁡ 2 ( θ ) ) − sin ⁡ ( θ ) \sin(3\theta)=4\sin(\theta)(1-\sin^2(\theta))-\sin(\theta) sin(3θ)=4sin(θ)(1sin2(θ))sin(θ)

展开:
sin ⁡ ( 3 θ ) = 4 sin ⁡ ( θ ) − 4 sin ⁡ 3 ( θ ) − sin ⁡ ( θ ) \sin(3\theta)=4\sin(\theta)-4\sin^3(\theta)-\sin(\theta) sin(3θ)=4sin(θ)4sin3(θ)sin(θ)

合并同类项:
sin ⁡ ( 3 θ ) = 3 sin ⁡ ( θ ) − 4 sin ⁡ 3 ( θ ) \sin(3\theta)=3\sin(\theta)-4\sin^3(\theta) sin(3θ)=3sin(θ)4sin3(θ)


总结

三倍角公式为:
cos ⁡ ( 3 θ ) = 4 cos ⁡ 3 ( θ ) − 3 cos ⁡ ( θ ) \cos(3\theta)=4\cos^3(\theta)-3\cos(\theta) cos(3θ)=4cos3(θ)3cos(θ)
sin ⁡ ( 3 θ ) = 3 sin ⁡ ( θ ) − 4 sin ⁡ 3 ( θ ) \sin(3\theta)=3\sin(\theta)-4\sin^3(\theta) sin(3θ)=3sin(θ)4sin3(θ)

Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的人脸识别系统 深度学习 (源码+文档)Python毕业设计-基于Python的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值