二倍角公式及其推导过程

二倍角公式是三角函数中的重要公式,它描述了角的两倍与其正弦、余弦、正切之间的关系。以下是推导过程:

1. 二倍角正弦公式

sin ⁡ ( 2 θ ) = 2 sin ⁡ θ cos ⁡ θ \sin(2\theta)=2\sin\theta\cos\theta sin(2θ)=2sinθcosθ

推导:
根据和角公式 sin ⁡ ( a + b ) = sin ⁡ a cos ⁡ b + cos ⁡ a sin ⁡ b \sin(a+b)=\sin a\cos b+\cos a\sin b sin(a+b)=sinacosb+cosasinb,令 a = b = θ a=b=\theta a=b=θ,得:
sin ⁡ ( 2 θ ) = sin ⁡ ( θ + θ ) = sin ⁡ θ cos ⁡ θ + cos ⁡ θ sin ⁡ θ \sin(2\theta)=\sin(\theta+\theta)=\sin\theta\cos\theta+\cos\theta\sin\theta sin(2θ)=sin(θ+θ)=sinθcosθ+cosθsinθ
合并同类项:
sin ⁡ ( 2 θ ) = 2 sin ⁡ θ cos ⁡ θ \sin(2\theta)=2\sin\theta\cos\theta sin(2θ)=2sinθcosθ


2. 二倍角余弦公式

cos ⁡ ( 2 θ ) = cos ⁡ 2 θ − sin ⁡ 2 θ \cos(2\theta)=\cos^2\theta-\sin^2\theta cos(2θ)=cos2θsin2θ

推导:
根据和角公式 cos ⁡ ( a + b ) = cos ⁡ a cos ⁡ b − sin ⁡ a sin ⁡ b \cos(a+b)=\cos a\cos b-\sin a\sin b cos(a+b)=cosacosbsinasinb,令 a = b = θ a=b=\theta a=b=θ,得:
cos ⁡ ( 2 θ ) = cos ⁡ ( θ + θ ) = cos ⁡ θ cos ⁡ θ − sin ⁡ θ sin ⁡ θ \cos(2\theta)=\cos(\theta+\theta)=\cos\theta\cos\theta-\sin\theta\sin\theta cos(2θ)=cos(θ+θ)=cosθcosθsinθsinθ
化简后:
cos ⁡ ( 2 θ ) = cos ⁡ 2 θ − sin ⁡ 2 θ \cos(2\theta)=\cos^2\theta-\sin^2\theta cos(2θ)=cos2θsin2θ

变形:
利用三角恒等式 sin ⁡ 2 θ + cos ⁡ 2 θ = 1 \sin^2\theta+\cos^2\theta=1 sin2θ+cos2θ=1,可以将 cos ⁡ ( 2 θ ) \cos(2\theta) cos(2θ)写成两种形式:

  1. cos ⁡ 2 θ \cos^2\theta cos2θ表示:
    cos ⁡ ( 2 θ ) = 2 cos ⁡ 2 θ − 1 \cos(2\theta)=2\cos^2\theta-1 cos(2θ)=2cos2θ1

  2. sin ⁡ 2 θ \sin^2\theta sin2θ表示:
    cos ⁡ ( 2 θ ) = 1 − 2 sin ⁡ 2 θ \cos(2\theta)=1-2\sin^2\theta cos(2θ)=12sin2θ


3. 二倍角正切公式

tan ⁡ ( 2 θ ) = 2 tan ⁡ θ 1 − tan ⁡ 2 θ ( tan ⁡ θ ≠ ± 1 ) \tan(2\theta)=\frac{2\tan\theta}{1-\tan^2\theta}\quad(\tan\theta\neq\pm1) tan(2θ)=1tan2θ2tanθ(tanθ=±1)

推导:
根据正切的定义 tan ⁡ θ = sin ⁡ θ cos ⁡ θ \tan\theta=\frac{\sin\theta}{\cos\theta} tanθ=cosθsinθ,利用正切的和角公式:
tan ⁡ ( a + b ) = tan ⁡ a + tan ⁡ b 1 − tan ⁡ a tan ⁡ b \tan(a+b)=\frac{\tan a+\tan b}{1-\tan a\tan b} tan(a+b)=1tanatanbtana+tanb
a = b = θ a=b=\theta a=b=θ,得:
tan ⁡ ( 2 θ ) = tan ⁡ ( θ + θ ) = tan ⁡ θ + tan ⁡ θ 1 − tan ⁡ θ ⋅ tan ⁡ θ \tan(2\theta)=\tan(\theta+\theta)=\frac{\tan\theta+\tan\theta}{1-\tan\theta\cdot\tan\theta} tan(2θ)=tan(θ+θ)=1tanθtanθtanθ+tanθ
化简:
tan ⁡ ( 2 θ ) = 2 tan ⁡ θ 1 − tan ⁡ 2 θ \tan(2\theta)=\frac{2\tan\theta}{1-\tan^2\theta} tan(2θ)=1tan2θ2tanθ


总结公式

  • sin ⁡ ( 2 θ ) = 2 sin ⁡ θ cos ⁡ θ \sin(2\theta)=2\sin\theta\cos\theta sin(2θ)=2sinθcosθ
  • cos ⁡ ( 2 θ ) = cos ⁡ 2 θ − sin ⁡ 2 θ = 2 cos ⁡ 2 θ − 1 = 1 − 2 sin ⁡ 2 θ \cos(2\theta)=\cos^2\theta-\sin^2\theta=2\cos^2\theta-1=1-2\sin^2\theta cos(2θ)=cos2θsin2θ=2cos2θ1=12sin2θ
  • tan ⁡ ( 2 θ ) = 2 tan ⁡ θ 1 − tan ⁡ 2 θ ( tan ⁡ θ ≠ ± 1 ) \tan(2\theta)=\frac{2\tan\theta}{1-\tan^2\theta}\quad(\tan\theta\neq\pm1) tan(2θ)=1tan2θ2tanθ(tanθ=±1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱代码的小黄人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值