二倍角公式是三角函数中的重要公式,它描述了角的两倍与其正弦、余弦、正切之间的关系。以下是推导过程:
1. 二倍角正弦公式
sin ( 2 θ ) = 2 sin θ cos θ \sin(2\theta)=2\sin\theta\cos\theta sin(2θ)=2sinθcosθ
推导:
根据和角公式
sin
(
a
+
b
)
=
sin
a
cos
b
+
cos
a
sin
b
\sin(a+b)=\sin a\cos b+\cos a\sin b
sin(a+b)=sinacosb+cosasinb,令
a
=
b
=
θ
a=b=\theta
a=b=θ,得:
sin
(
2
θ
)
=
sin
(
θ
+
θ
)
=
sin
θ
cos
θ
+
cos
θ
sin
θ
\sin(2\theta)=\sin(\theta+\theta)=\sin\theta\cos\theta+\cos\theta\sin\theta
sin(2θ)=sin(θ+θ)=sinθcosθ+cosθsinθ
合并同类项:
sin
(
2
θ
)
=
2
sin
θ
cos
θ
\sin(2\theta)=2\sin\theta\cos\theta
sin(2θ)=2sinθcosθ
2. 二倍角余弦公式
cos ( 2 θ ) = cos 2 θ − sin 2 θ \cos(2\theta)=\cos^2\theta-\sin^2\theta cos(2θ)=cos2θ−sin2θ
推导:
根据和角公式
cos
(
a
+
b
)
=
cos
a
cos
b
−
sin
a
sin
b
\cos(a+b)=\cos a\cos b-\sin a\sin b
cos(a+b)=cosacosb−sinasinb,令
a
=
b
=
θ
a=b=\theta
a=b=θ,得:
cos
(
2
θ
)
=
cos
(
θ
+
θ
)
=
cos
θ
cos
θ
−
sin
θ
sin
θ
\cos(2\theta)=\cos(\theta+\theta)=\cos\theta\cos\theta-\sin\theta\sin\theta
cos(2θ)=cos(θ+θ)=cosθcosθ−sinθsinθ
化简后:
cos
(
2
θ
)
=
cos
2
θ
−
sin
2
θ
\cos(2\theta)=\cos^2\theta-\sin^2\theta
cos(2θ)=cos2θ−sin2θ
变形:
利用三角恒等式
sin
2
θ
+
cos
2
θ
=
1
\sin^2\theta+\cos^2\theta=1
sin2θ+cos2θ=1,可以将
cos
(
2
θ
)
\cos(2\theta)
cos(2θ)写成两种形式:
-
以 cos 2 θ \cos^2\theta cos2θ表示:
cos ( 2 θ ) = 2 cos 2 θ − 1 \cos(2\theta)=2\cos^2\theta-1 cos(2θ)=2cos2θ−1 -
以 sin 2 θ \sin^2\theta sin2θ表示:
cos ( 2 θ ) = 1 − 2 sin 2 θ \cos(2\theta)=1-2\sin^2\theta cos(2θ)=1−2sin2θ
3. 二倍角正切公式
tan ( 2 θ ) = 2 tan θ 1 − tan 2 θ ( tan θ ≠ ± 1 ) \tan(2\theta)=\frac{2\tan\theta}{1-\tan^2\theta}\quad(\tan\theta\neq\pm1) tan(2θ)=1−tan2θ2tanθ(tanθ=±1)
推导:
根据正切的定义
tan
θ
=
sin
θ
cos
θ
\tan\theta=\frac{\sin\theta}{\cos\theta}
tanθ=cosθsinθ,利用正切的和角公式:
tan
(
a
+
b
)
=
tan
a
+
tan
b
1
−
tan
a
tan
b
\tan(a+b)=\frac{\tan a+\tan b}{1-\tan a\tan b}
tan(a+b)=1−tanatanbtana+tanb
令
a
=
b
=
θ
a=b=\theta
a=b=θ,得:
tan
(
2
θ
)
=
tan
(
θ
+
θ
)
=
tan
θ
+
tan
θ
1
−
tan
θ
⋅
tan
θ
\tan(2\theta)=\tan(\theta+\theta)=\frac{\tan\theta+\tan\theta}{1-\tan\theta\cdot\tan\theta}
tan(2θ)=tan(θ+θ)=1−tanθ⋅tanθtanθ+tanθ
化简:
tan
(
2
θ
)
=
2
tan
θ
1
−
tan
2
θ
\tan(2\theta)=\frac{2\tan\theta}{1-\tan^2\theta}
tan(2θ)=1−tan2θ2tanθ
总结公式
- sin ( 2 θ ) = 2 sin θ cos θ \sin(2\theta)=2\sin\theta\cos\theta sin(2θ)=2sinθcosθ
- cos ( 2 θ ) = cos 2 θ − sin 2 θ = 2 cos 2 θ − 1 = 1 − 2 sin 2 θ \cos(2\theta)=\cos^2\theta-\sin^2\theta=2\cos^2\theta-1=1-2\sin^2\theta cos(2θ)=cos2θ−sin2θ=2cos2θ−1=1−2sin2θ
- tan ( 2 θ ) = 2 tan θ 1 − tan 2 θ ( tan θ ≠ ± 1 ) \tan(2\theta)=\frac{2\tan\theta}{1-\tan^2\theta}\quad(\tan\theta\neq\pm1) tan(2θ)=1−tan2θ2tanθ(tanθ=±1)