keras加载预训练模型

1.搭建自己的模型:

model = get_net()

2.编译模型:

model.compile(optimizer=Adam(lr=1e-5), loss=my_loss, metrics=[dice_coef])

3.加载预训练模型:

model.load_weights( "my_net.hdf5" )

4.如果想继续训练模型:

model.fit_generator(generator=DataGenerator(), epochs=self.epochs,
                            callbacks=[ TensorBoard(log_dir='./log/')])

5.如果只是想使用模型预测结果:

pred=model.predict(test_data, batch_size=2, verbose=1)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值