《数据结构》-二叉树(静态数组实现)

静态数组实现二叉树

二叉链表实现二叉树

三叉链表实现二叉树

线索二叉树

树的基本概念

树的 结点 包含一个数据元素及若干个指向其子树的分支
结点拥有的子树数称为 结点的度
度为 0 的结点称为叶子结点终端结点
度不为 0 的结点称为非终端节点分支结点。除根节点外,分支结点也称为内部结点
树的度是树内各结点的度的最大值
结点的子树的根称为该结点的孩子,相应的该结点称为孩子的双亲,用一个双亲的孩子之间互称为兄弟
结点的层次从根节点开始定义,根为第一层,根的孩子为第二层
树中结点的最大层次称为树的深度

二叉树的性质

二叉树 是另一种树型结构,它的特点是每个结点至多只有两棵子树(即二叉树中不存在度大于2的结点),且,二叉树的子树有左右之分,其次序 不能随意颠倒。

  • 在二叉树的第 i 层上至多有 2^i - 1 个结点(i>=1)

  • 深度为 k 的二叉树至多有 2^k - 1 个结点(k>=1)

  • 对任意一个二叉树 T,如果终端结点的个数为 n0,度为 2 的结点数为 n2,则 n0 = n2 + 1

  • 具有 n 个结点的完全二叉树的深度为
    在这里插入图片描述

  • 如果对一棵有 n 个结点的完全二叉树(其深度为)的结点按层序编号(从第一层到第层,每层从左到右),则对任一结点 i(1=<i<= n),有

    1、如果 i=1 则结点 i 是二叉树的根,无双亲;如果 i>1则其双亲是结点

    2、如果 2i>n,则结点 i 无左孩子(结点 i 为叶子结点);否则其左孩子是结点 2i

    3、如果 2i+1>n,则结点 i 无右孩子;否则其右孩子是结点 2i+1

二叉树的存储结构分类

在这里插入图片描述

顺序存储结构特点

按满二叉树的结点层次编号,依次存放二叉树中的数据元素

特点:节点间关系蕴含在其存储位置中,比较浪费空间,适于存满/完全二叉树

存储示例

在这里插入图片描述

在这里插入图片描述

顺序存储结构程序实现

main.c
/*
 * Change Logs:
 * Date           Author       Notes
 * 2021-07-01     tyustli      first version
 */

#include "tree.h"

void visit(TElemType e)
{
    printf("%d ", e);
}

int main(int argc, char *argv)
{
    printf("this is tree sample \r\n");
    Status i;

    int j;
    struct position p;
    TElemType e;
    SqBiTree T, s;
    InitBiTree(T);
    CreateBiTree(T);

    printf("建立二叉树后,树空否? %d (1:是 0:否) 树的深度 = %d \r\n", BiTreeEmpty(T), BiTreeDepth(T));

    i = Root(T, &e);
    if (i)
        printf("二叉树的根为:%d\r\n", e);
    else
        printf("树空,无根\r\n");

    printf("层序遍历二叉树:\r\n");
    LevelOrderTraverse(T, visit);

    printf("先序遍历二叉树:\r\n");
    PreOrderTraverse(T, visit);

    printf("中序遍历二叉树:\r\n");
    InOrderTraverse(T, visit);

    printf("后序遍历二叉树:\r\n");
    PostOrderTraverse(T, visit);

    printf("请输入待修改结点的层号 本层序号: ");
    scanf("%d %d", &p.level, &p.order);

    e = Value(T, p);
    printf("待修改结点的原值为 %d 请输入新值: ", e);
    scanf("%d", &e);
    Assign(T, p, e);
    printf("先序遍历二叉树:\r\n");
    PreOrderTraverse(T, visit);

    printf("结点 e 的双亲为 %d 左右孩子分别为", Parent(T, e));
    printf("%d %d ,左右兄弟分别为", LeftChild(T, e), RightChild(T, e));
    printf("%d %d \r\n", LeftSibling(T, e), RightSibling(T, e));

    return 1;
}

/*
编译:make
运行:./obj
结果:
          1
      2       3
    4   5    6   7
  8   9

this is tree sample
请按层序输入结点的值(整型),0表示空结点,输999结束。结点数≤ 100
1
2
3
4
5
6
7
8
9
999
建立二叉树后,树空否? 0 (1:是 0:否) 树的深度 = 4
二叉树的根为:1
层序遍历二叉树:
1 2 3 4 5 6 7 8 9
先序遍历二叉树:
1 2 4 8 9 5 3 6 7
中序遍历二叉树:
8 4 9 2 5 1 6 3 7
后序遍历二叉树:
8 9 4 5 2 6 7 3 1
请输入待修改结点的层号 本层序号: 3 2
待修改结点的原值为 5 请输入新值: 10
先序遍历二叉树:
1 2 4 8 9 10 3 6 7
结点 e 的双亲为 2 左右孩子分别为0 0 ,左右兄弟分别为4 0
*/
tree.c
/*
 * Change Logs:
 * Date           Author       Notes
 * 2021-07-01     tyustli      first version
 */

#include "tree.h"

TElemType Nil = 0; // 设整型以0为空

// 二叉树的顺序存储的基本操作(23个)
#define ClearBiTree InitBiTree   // 在顺序存储结构中,两函数完全一样
#define DestroyBiTree InitBiTree // 在顺序存储结构中,两函数完全一样

// 构造空二叉树T。因为T是数组名,故不需要&
void InitBiTree(SqBiTree T)
{
    int i;
    for (i = 0; i < MAX_TREE_SIZE; i++)
        T[i] = Nil; // 初值为空(Nil在主程中定义)
}

// 按层序次序输入二叉树中结点的值(字符型或整型), 构造顺序存储的二叉树T
void CreateBiTree(SqBiTree T)
{
    int i = 0;
    InitBiTree(T); // 构造空二叉树T

    printf("请按层序输入结点的值(整型),0表示空结点,输999结束。结点数≤ %d \r\n", MAX_TREE_SIZE);
    while (1)
    {
        scanf("%d", &T[i]);
        if (T[i] == 999)
        {
            T[i] = Nil;
            break;
        }
        i++;
    }

    for (i = 1; i < MAX_TREE_SIZE; i++)
    {
        if (i != 0 && T[(i + 1) / 2 - 1] == Nil && T[i] != Nil) // 此结点(不空)无双亲且不是根
        {
            printf("出现无双亲的非根结点 %d \r\n", T[i]);
            exit(-1);
        }
    }
}

// 初始条件:二叉树T存在。
// 操作结果:若T为空二叉树,则返回TRUE,否则FALSE
Status BiTreeEmpty(SqBiTree T)
{
    if (T[0] == Nil) // 根结点为空,则树空
        return TRUE;
    else
        return FALSE;
}

// 初始条件:二叉树T存在。
// 操作结果:返回T的深度
int BiTreeDepth(SqBiTree T)
{
    int i, j = -1;
    for (i = MAX_TREE_SIZE - 1; i >= 0; i--) // 找到最后一个结点
        if (T[i] != Nil)
            break;
    i++; // 为了便于计算
    do
        j++;
    while (i >= pow(2.0, j));

    return j;
}

// 初始条件:二叉树T存在。
// 操作结果:当T不空,用e返回T的根,返回OK;否则返回ERROR,e无定义
Status Root(SqBiTree T, TElemType *e)
{
    if (BiTreeEmpty(T)) // T空
    {
        return ERROR;
    }
    else
    {
        *e = T[0];
        return OK;
    }
}

// 初始条件:二叉树T存在,e是 T 中某个结点(的位置)
// 操作结果:返回处于位置 e (层,本层序号)的结点的值
TElemType Value(SqBiTree T, struct position e)
{
    return T[(int)(pow(2, e.level - 1) + e.order - 2)];
}

// 初始条件:二叉树T存在,e 是 T 中某个结点(的位置)
// 操作结果:给处于位置 e (层,本层序号)的结点赋新值 value
Status Assign(SqBiTree T, struct position e, TElemType value)
{
    int i = (int)(pow(2, e.level - 1) + e.order - 2); // 将层、本层序号转为矩阵的序号
    if (value != Nil && T[(i + 1) / 2 - 1] == Nil)    // 给叶子赋非空值但双亲为空
        return ERROR;
    else if (value == Nil && (T[i * 2 + 1] != Nil || T[i * 2 + 2] != Nil)) //  给双亲赋空值但有叶子(不空)
        return ERROR;
    T[i] = value;
    return OK;
}

// 初始条件:二叉树 T 存在,e 是 T 中某个结点
// 操作结果:若 e 是 T 的非根结点,则返回它的双亲,否则返回"空"
TElemType Parent(SqBiTree T, TElemType e)
{
    int i;
    if (T[0] == Nil) // 空树
        return Nil;
    for (i = 1; i <= MAX_TREE_SIZE - 1; i++)
        if (T[i] == e) // 找到e
            return T[(i + 1) / 2 - 1];
    return Nil; // 没找到e
}

// 初始条件:二叉树T存在,e 是 T 中某个结点。
// 操作结果:返回 e 的左孩子。若 e 无左孩子,则返回"空"
TElemType LeftChild(SqBiTree T, TElemType e)
{
    int i;

    if (T[0] == Nil) // 空树
        return Nil;
    for (i = 0; i <= MAX_TREE_SIZE - 1; i++)
        if (T[i] == e) // 找到e
            return T[i * 2 + 1];
    return Nil; // 没找到e
}

// 初始条件:二叉树T存在,e 是 T 中某个结点。
// 操作结果:返回 e 的右孩子。若 e 无右孩子,则返回"空"
TElemType RightChild(SqBiTree T, TElemType e)
{
    int i;

    if (T[0] == Nil) // 空树
        return Nil;
    for (i = 0; i <= MAX_TREE_SIZE - 1; i++)
        if (T[i] == e) // 找到e
            return T[i * 2 + 2];
    return Nil; // 没找到e
}

// 初始条件:二叉树 T 存在,e 是 T 中某个结点
// 操作结果:返回 e 的左兄弟。若 e 是 T 的左孩子或无左兄弟,则返回"空"
TElemType LeftSibling(SqBiTree T, TElemType e)
{
    int i;
    if (T[0] == Nil) // 空树
        return Nil;
    for (i = 1; i <= MAX_TREE_SIZE - 1; i++)
        if (T[i] == e && i % 2 == 0) // 找到e且其序号为偶数(是右孩子)
            return T[i - 1];
    return Nil; // 没找到e
}

// 初始条件:二叉树T存在,e是T中某个结点
// 操作结果:返回e的右兄弟。若e是T的右孩子或无右兄弟,则返回"空"
TElemType RightSibling(SqBiTree T, TElemType e)
{
    int i;
    if (T[0] == Nil) // 空树
        return Nil;
    for (i = 1; i <= MAX_TREE_SIZE - 1; i++)
        if (T[i] == e && i % 2) // 找到e且其序号为奇数(是左孩子)
            return T[i + 1];
    return Nil; // 没找到e
}

void Move(SqBiTree q, int j, SqBiTree T, int i) // InsertChild() 用到
{                                               // 把从 q 的 j 结点开始的子树移为从 T 的 i 结点开始的子树
    if (q[2 * j + 1] != Nil)                    // q 的左子树不空
        Move(q, (2 * j + 1), T, (2 * i + 1));   // 把 q 的 j 结点的左子树移为 T 的 i 结点的左子树
    if (q[2 * j + 2] != Nil)                    // q 的右子树不空
        Move(q, (2 * j + 2), T, (2 * i + 2));   // 把 q 的 j 结点的右子树移为 T 的 i 结点的右子树
    T[i] = q[j];                                // 把 q 的 j 结点移为 T 的 i 结点
    q[j] = Nil;                                 // 把 q 的 j 结点置空
}

// 初始条件:二叉树 T 存在,p 是 T 中某个结点的值,LR 为 0 或 1,非空二叉树 c 与 T 不相交且右子树为空
// 操作结果: 根据 LR 为 0 或 1,插入 c 为 T 中 p 结点的左或右子树。p 结点的原有左或右子树则成为 c 的右子树
void InsertChild(SqBiTree T, TElemType p, int LR, SqBiTree c)
{
    int j, k, i = 0;
    for (j = 0; j < (int)(pow(2, BiTreeDepth(T))) - 1; j++) // 查找p的序号
        if (T[j] == p)                                      // j为p的序号
            break;
    k = 2 * j + 1 + LR;           // k为p的左或右孩子的序号
    if (T[k] != Nil)              // p原来的左或右孩子不空
        Move(T, k, T, 2 * k + 2); // 把从T的k结点开始的子树移为从k结点的右子树开始的子树
    Move(c, i, T, k);             // 把从c的i结点开始的子树移为从T的k结点开始的子树
}

#include "queue.h"

// 初始条件:二叉树T存在,p指向T中某个结点,LR为1或0
// 操作结果:根据LR为1或0,删除T中p所指结点的左或右子树
Status DeleteChild(SqBiTree T, struct position p, int LR)
{
    int i;
    Status k = OK; // 队列不空的标志
    LinkQueue q;
    InitQueue(&q);                              // 初始化队列,用于存放待删除的结点
    i = (int)pow(2, p.level - 1) + p.order - 2; // 将层、本层序号转为矩阵的序号
    if (T[i] == Nil)                            // 此结点空
        return ERROR;
    i = i * 2 + 1 + LR; // 待删除子树的根结点在矩阵中的序号
    while (k)
    {
        if (T[2 * i + 1] != Nil)    // 左结点不空
            EnQueue(&q, 2 * i + 1); // 入队左结点的序号
        if (T[2 * i + 2] != Nil)    // 右结点不空
            EnQueue(&q, 2 * i + 2); // 入队右结点的序号
        T[i] = Nil;                 // 删除此结点
        k = DeQueue(&q, &i);        // 队列不空
    }
    return OK;
}

void (*VisitFunc)(TElemType); // 函数变量
void PreTraverse(SqBiTree T, int e)
{ // PreOrderTraverse()调用
    VisitFunc(T[e]);
    if (T[2 * e + 1] != Nil) // 左子树不空
        PreTraverse(T, 2 * e + 1);
    if (T[2 * e + 2] != Nil) // 右子树不空
        PreTraverse(T, 2 * e + 2);
}

// 初始条件:二叉树存在,Visit是对结点操作的应用函数
// 操作结果:先序遍历T,对每个结点调用函数Visit一次且仅一次

void PreOrderTraverse(SqBiTree T, void (*Visit)(TElemType))
{
    VisitFunc = Visit;
    if (!BiTreeEmpty(T)) // 树不空
        PreTraverse(T, 0);
    printf("\r\n");
}

void InTraverse(SqBiTree T, int e)
{                            // InOrderTraverse()调用
    if (T[2 * e + 1] != Nil) // 左子树不空
        InTraverse(T, 2 * e + 1);
    VisitFunc(T[e]);
    if (T[2 * e + 2] != Nil) // 右子树不空
        InTraverse(T, 2 * e + 2);
}

// 初始条件:二叉树存在,Visit是对结点操作的应用函数
// 操作结果:中序遍历T,对每个结点调用函数Visit一次且仅一次
void InOrderTraverse(SqBiTree T, void (*Visit)(TElemType))
{
    VisitFunc = Visit;
    if (!BiTreeEmpty(T)) // 树不空
        InTraverse(T, 0);
    printf("\r\n");
}

void PostTraverse(SqBiTree T, int e)
{                            // PostOrderTraverse()调用
    if (T[2 * e + 1] != Nil) // 左子树不空
        PostTraverse(T, 2 * e + 1);
    if (T[2 * e + 2] != Nil) // 右子树不空
        PostTraverse(T, 2 * e + 2);
    VisitFunc(T[e]);
}

// 初始条件:二叉树T存在,Visit是对结点操作的应用函数
// 操作结果:后序遍历T,对每个结点调用函数Visit一次且仅一次
void PostOrderTraverse(SqBiTree T, void (*Visit)(TElemType))
{
    VisitFunc = Visit;
    if (!BiTreeEmpty(T)) // 树不空
        PostTraverse(T, 0);
    printf("\r\n");
}

// 层序遍历二叉树
void LevelOrderTraverse(SqBiTree T, void (*Visit)(TElemType))
{
    int i = MAX_TREE_SIZE - 1, j;
    while (T[i] == Nil)
        i--;                 // 找到最后一个非空结点的序号
    for (j = 0; j <= i; j++) // 从根结点起,按层序遍历二叉树
        if (T[j] != Nil)
            Visit(T[j]); // 只遍历非空的结点
    printf("\r\n");
}

// 逐层、按本层序号输出二叉树
void Print(SqBiTree T)
{
    int j, k;
    struct position p;
    TElemType e;
    for (j = 1; j <= BiTreeDepth(T); j++)
    {
        printf("第 %d 层: ", j);
        for (k = 1; k <= pow(2, j - 1); k++)
        {
            p.level = j;
            p.order = k;
            e = Value(T, p);
            if (e != Nil)
                printf("k = %d e = %d", k, e);
        }
        printf("\r\n");
    }
}
tree.h
/*
 * Change Logs:
 * Date           Author       Notes
 * 2021-07-01     tyustli      first version
 */

#include <string.h>
#include <ctype.h>
#include <malloc.h> // malloc()等
#include <limits.h> // INT_MAX等
#include <stdio.h>  // EOF(=^Z或F6),NULL
#include <stdlib.h> // atoi()
#include <math.h>   // floor(),ceil(),abs()

// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
// #define OVERFLOW -2 因为在math.h中已定义OVERFLOW的值为3,故去掉此行
typedef int Status;  // Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; // Boolean是布尔类型,其值是TRUE或FALSE

typedef int TElemType;

// 二叉树的顺序存储表示
#define MAX_TREE_SIZE 100                  // 二叉树的最大结点数
typedef TElemType SqBiTree[MAX_TREE_SIZE]; // 0号单元存储根结点

struct position
{
    int level, order; // 结点的层,本层序号(按满二叉树计算)
};

void InitBiTree(SqBiTree T);
void CreateBiTree(SqBiTree T);
Status BiTreeEmpty(SqBiTree T);
int BiTreeDepth(SqBiTree T);
Status Root(SqBiTree T, TElemType *e);
TElemType Value(SqBiTree T, struct position e);
Status Assign(SqBiTree T, struct position e, TElemType value);
TElemType Parent(SqBiTree T, TElemType e);
TElemType LeftChild(SqBiTree T, TElemType e);
TElemType RightChild(SqBiTree T, TElemType e);
TElemType LeftSibling(SqBiTree T, TElemType e);
TElemType RightSibling(SqBiTree T, TElemType e);
void Move(SqBiTree q, int j, SqBiTree T, int i);
void InsertChild(SqBiTree T, TElemType p, int LR, SqBiTree c);
Status DeleteChild(SqBiTree T, struct position p, int LR);
void PreTraverse(SqBiTree T, int e);
void PreOrderTraverse(SqBiTree T, void (*Visit)(TElemType));
void InTraverse(SqBiTree T, int e);
void InOrderTraverse(SqBiTree T, void (*Visit)(TElemType));
void PostTraverse(SqBiTree T, int e);
void PostOrderTraverse(SqBiTree T, void (*Visit)(TElemType));
void LevelOrderTraverse(SqBiTree T, void (*Visit)(TElemType));
void Print(SqBiTree T);
makefile
objects  = main.o tree.o queue.o

obj: $(objects)
	cc -o obj $(objects) -lm

main.o : tree.h
tree.o : tree.h
queue.o : queue.h

.PHONY : clean
clean :
	-rm obj $(objects)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值