小样本机器学习再发力!2025再登Nature正刊!

小样本机器学习(Few-Shot Learning, FSL)是一种在仅有少量标注样本(通常为几个到几十个)的情况下,训练机器学习模型以完成新任务的方法。

我还整理出了相关的论文+开源代码,以下是精选部分论文

更多论文料可以关注AI科技探寻,发送:111  领取更多[论文+开源码】    

论文1

标题:

【Nature】

Accurate predictions on small data with a tabular foundation model

小数据上的准确预测:表格基础模型

法:

  • 表格预训练网络(TabPFN):提出了一种基于生成式Transformer的基础模型TabPFN,通过在数百万个合成数据集上进行预训练,学习解决表格数据预测任务的通用算法。

  • 上下文学习(In-Context Learning, ICL):利用上下文学习机制,使模型能够在单次前向传播中完成对新数据集的训练和预测,无需针对每个数据集单独训练模型。

    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值