小样本机器学习(Few-Shot Learning, FSL)是一种在仅有少量标注样本(通常为几个到几十个)的情况下,训练机器学习模型以完成新任务的方法。
我还整理出了相关的论文+开源代码,以下是精选部分论文
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】
论文1
标题:
【Nature】
Accurate predictions on small data with a tabular foundation model
小数据上的准确预测:表格基础模型
方法:
-
表格预训练网络(TabPFN):提出了一种基于生成式Transformer的基础模型TabPFN,通过在数百万个合成数据集上进行预训练,学习解决表格数据预测任务的通用算法。
-
上下文学习(In-Context Learning, ICL):利用上下文学习机制,使模型能够在单次前向传播中完成对新数据集的训练和预测,无需针对每个数据集单独训练模型。
<