表1.1 包含4个样例,3种属性,假设空间中有3 * 4 * 4 + 1 = 49种假设。在不考虑冗余的情况下,最多包含k个合取式来表达假设空间,显然k的最大值是49,每次从中选出k个来组成析合式,共种可能。但是其中包含了很多沉余的情况(至少存在一个合取式被剩余的析合式完全包含<空集除外>)。
如果考虑沉余的情况 在这里忽略空集,一个原因是并不是太明白空集是否应该加入析合式,另外就算需要加入,求出了前面48种假设的组合,可以很容易求出加入空集后的组合数(每种可能都可以加上空集,再加上1种空集单独的情况)。 48种假设中: 具体假设:2∗3∗3=18种 一个属性泛化假设:2∗3+3∗3+2∗3=21种 两个属性泛化假设:2+3+3=8种 三属性泛化:1种
回答1:
1). 通常认为两个数据的属性越相近,则更倾向于将他们分为同一类。若相同属性出现了两种不同的分类,则认为它属于与他最临近几个数据的属性。
2). 也可以考虑同时去掉所有具有相同属性而不同分类的数据,留下的数据就是没误差的数据,但是可能会丢失部分信息。
回答2:
1). 定义一个阈值,只要训练后满足的样本数量百分比达到这个阈值即可。
2). 在训练过程中选择满足最多样本的假设。
NFL首先要保证真目标函数f均匀分布。对于X个训练数据的二分类问题,显然f共有种情况,其中一半是与假设一致的,也就是P(f(x) = h(x)) = 0.5.因此,其中应为常数,如果性能度量为错误率,二者各为0.5,则该值为1,如果为其他性能度量,根据网友的想法:,应当隐含这样的充分条件。
https://wenku.baidu.com/view/fd90c73f4b35eefdc8d3335e.html