pytorch DataLoader 自定义 sampler

本文介绍了如何在PyTorch中创建自定义数据加载器和Sampler。通过一个基础代码示例,展示了如何定义一个名为`IndependentHalvesSampler`的Sampler子类,该Sampler将数据集分为两半并随机打乱,然后以交错方式遍历。使用这个Sampler创建DataLoader,可以观察到数据以特定顺序被加载。这为理解和定制数据采样策略提供了基础。
摘要由CSDN通过智能技术生成

本文归纳自:

https://www.scottcondron.com/jupyter/visualisation/audio/2020/12/02/dataloaders-samplers-collate.html#SequentialSampler 

基础代码

from torch.utils.data import DataLoader
#构造数据
xs = list(range(11))
ys = list(range(10,21))
print('xs values: ', xs)
print('ys values: ', ys)
#定义Dataset子类 
class MyDataset:
    def __init__(self, xs, ys):
        self.xs = xs
        self.ys = ys
    
    def __getitem__(self, i):
        return self.xs[i], self.ys[i]
    
    def __len__(self):
        return len(self.xs)
#实例化一个Dataset
dataset = MyDataset(xs, ys)
dataset[2] # returns the tuple (x[2], y[2])

自定义 Sampler

每个自定义的Sampler子类需要一个 __iter__ 方法, 以保证遍历到dataset的每一个元素,

还需要一个 __len__ 方法 ,来获取数据集的大小.

#collapse-hide
import random
from torch.utils.data.sampler import Sampler

class IndependentHalvesSampler(Sampler):
    def __init__(self, dataset):
        halfway_point = int(len(dataset)/2)
        self.first_half_indices = list(range(halfway_point))
        self.second_half_indices = list(range(halfway_point, len(dataset)))
        
    def __iter__(self):
        random.shuffle(self.first_half_indices)
        random.shuffle(self.second_half_indices)
        return iter(self.first_half_indices + self.second_half_indices)
    
    def __len__(self):
        return len(self.first_half_indices) + len(self.second_half_indices)


our_sampler = IndependentHalvesSampler(dataset)
print('First half indices: ', our_sampler.first_half_indices)
print('Second half indices:', our_sampler.second_half_indices)

dl = DataLoader(dataset, sampler=our_sampler, batch_size=1)

for i, data in enumerate(dl):
  print(data)

[tensor([1]), tensor([11])]
[tensor([4]), tensor([14])]
[tensor([3]), tensor([13])]
[tensor([0]), tensor([10])]
[tensor([2]), tensor([12])]
[tensor([7]), tensor([17])]
[tensor([8]), tensor([18])]
[tensor([9]), tensor([19])]
[tensor([5]), tensor([15])]
[tensor([6]), tensor([16])]
[tensor([10]), tensor([20])]

 

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 在使用LSTM(长短期记忆网络)进行文本序列处理时,遇到数据不等长的问题是比较常见的情况。PyTorchDataLoader可以帮助我们有效地处理这种情况。 首先,我们需要将数据进行预处理,并将其转换为适应LSTM模型输入的格式。通常,我们会使用分词技术将文本分割为单词或子词,并为每个单词或子词分配一个唯一的索引。然后,我们可以将每个序列中的单词索引转换为张量,并使用Packing技术将它们打包为一个批次。 其次,要在PyTorch中处理不等长的序列,可以使用Collate函数来自定义一个处理数据的函数。Collate函数以批次数据作为输入,并在其中对数据进行处理。例如,在Collate函数中,我们可以使用torch.nn.utils.rnn.pad_sequence函数对序列进行填充,使它们的长度相等。 然后,我们需要指定一个Sampler来确定每个批次的数据样本。在处理不等长序列时,通常建议使用Sampler来根据数据长度对样本进行排序,以使每个批次的数据样本长度相对接近。 最后,在创建DataLoader对象时,我们可以通过设置参数drop_last=True来避免最后一个批次中的样本长度小于其他批次。这样做可以确保每个批次的数据样本长度一致,并且减少处理不等长序列的复杂性。 综上所述,使用PyTorchDataLoader和一些预处理技术,我们可以有效地处理数据不等长的情况,并将其用于训练和评估LSTM等序列模型。 ### 回答2: 在使用PyTorch中的数据加载器(DataLoader)时,如果我们处理的是不等长的数据序列并使用LSTM模型,我们需要考虑如何处理这种情况。 首先,我们需要确保我们的数据已经预处理为适当的格式。对于不等长的数据序列,我们需要将它们填充或裁剪为相同的长度。一种常见的方法是使用填充(padding)来将所有序列扩展到最长序列的长度。我们可以使用PyTorch的`pad_sequence`函数来实现这一步骤。对于较短的序列,我们可以使用特定的填充值,如0,进行填充。 接下来,我们需要创建一个自定义的数据集类来处理我们的数据。这个类应该提供`__getitem__`和`__len__`方法。在`__getitem__`方法中,我们需要根据索引获取填充后的序列,并返回它们以及对应的标签。我们还可以使用`collate_fn`函数来对获取的批次数据进行进一步处理,以适应LSTM模型的输入要求。 然后,我们可以使用PyTorch的`DataLoader`来加载我们的数据集。在初始化`DataLoader`时,我们需要设置`collate_fn`参数为我们自定义的处理函数,以确保加载器能够正确处理不等长的数据序列。此外,我们还应该选择适当的`batch_size`、`shuffle`和`num_workers`等参数。 最后,在训练模型时,我们需要在LSTM模型的`forward`方法中处理不等长的数据序列。这可以通过在LSTM模型的输入中指定序列的长度或使用动态计算图的方法来实现。 总之,当我们有不等长的数据序列并使用LSTM模型时,我们需要对数据进行适当的预处理,创建自定义的数据集类来处理数据,使用`DataLoader`加载器以及在模型中适当地处理不等长的数据序列。通过这些步骤,我们可以成功处理不等长的数据序列并应用于LSTM模型的训练。 ### 回答3: 在使用PyTorchDataloader加载数据时,遇到数据不等长的情况,并且需要将这些数据传入LSTM模型进行训练。这个问题可以有几种解决方案。 第一种方案是使用PyTorch提供的pad_sequence函数将数据进行填充,使其等长。pad_sequence函数会找到所有数据中最长的序列,然后在其他序列末尾填充0,使它们的长度与最长序列相等。这样处理后的数据可以作为模型的输入进行训练。需要注意的是,LSTM模型需要将数据按照序列长度进行排序,以便在训练过程中使用pack_padded_sequence函数进行处理。 第二种方案是使用torch.nn.utils.rnn.pack_sequence函数将数据打包成一个批次。该函数会将每个序列长度存储下来,并按照序列长度降序排列,再将序列内容打包成一个Tensor。在训练过程中,可以使用pack_padded_sequence函数对打包后的数据进行处理,提高模型的训练效率。 第三种方案是对数据进行随机舍弃或截断,使得所有序列等长。这种方法可能会导致数据丢失一部分信息,但在一定程度上可以减少数据处理的复杂性。 以上是针对数据不等长的情况,在使用PyTorchDataloader加载数据时可以采取的几种方案。根据具体的需求和应用场景,选择合适的方法来处理数据不等长的情况,以提高模型的效果和训练速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

子燕若水

吹个大气球

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值