四则运算符
import tensorflow as tf
data1 = tf.constant(6)
data2 = tf.constant(2)
dataAdd = tf.add(data1,data2)
dataMul = tf.multiply(data1,data2)
dataSub = tf.subtract(data1,data2)
dataDiv = tf.divide(data1,data2)
with tf.Session() as sess:
print(sess.run(dataAdd))
print(sess.run(dataMul))
print(sess.run(dataSub))
print(sess.run(dataDiv))
print('end')
add(A,B)进行A+B
multiply(A,B) 进行A*B
subtract(A,B)进行A-B
divide(A,B)进行A/B
运行结果:
import tensorflow as tf
data1 = tf.constant(6)
data2 = tf.Variable(2)
dataAdd = tf.add(data1,data2)
dataCopy = tf.assign(data2,dataAdd)#dataAdd->data2
dataMul = tf.multiply(data1,data2)
dataSub = tf.subtract(data1,data2)
dataDiv = tf.divide(data1,data2)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print(sess.run(dataAdd))
print(sess.run(dataMul))
print(sess.run(dataSub))
print(sess.run(dataDiv))
print('sess.run(dataCopy)',sess.run(dataCopy))#8->data2
print('dataCopy.eval()',dataCopy.eval())#8+6->data = 14
print('tf.get_default_session()',tf.get_default_session().run(dataCopy))
print('end')
assign(data2,dataAdd)#dataAdd->data2 ,data1+data2两个数相加赋值给data2
sess.run(dataCopy)#8->data2 = data1+data2两个数相加赋值给data2
dataCopy.eval())#8+6->data = 14
tf.get_default_session().run(dataCopy)
矩阵基础
#placehold
import tensorflow as tf
data1 = tf.placeholder(tf.float32)
data2 = tf.placeholder(tf.float32)
dataAdd = tf.add(data1,data2)
with tf.Session() as sess:
print(sess.run(dataAdd,feed_dict={data1:6,data2:2}))
#1 dataAdd 2 data(feed_dict = {1: 2:})
print('end!')
#类比 数组 N行N列 {} 内部{里面 列数据} {} 中括号整体 行数
#{{6,6}}
import tensorflow as tf
data1 = tf.constant([[6,6]])
data2 = tf.constant([[2],
[2]])
data3 = tf.constant([[3,3]])
data4 = tf.constant([[1,2],
[3,4],
[5,6]])
print(data4.shape)#维度
with tf.Session() as sess:
print(sess.run(data4))
print(sess.run(data4[0]))#打印某一行
print(sess.run(data4[:,0]))#打印列
print(sess.run(data4[0,1]))
import tensorflow as tf
data1 = tf.constant([[6,6]])
data2 = tf.constant([[2],
[2]])
data3 = tf.constant([[3,3]])
data4 = tf.constant([[1,2],
[3,4],
[5,6]])
matMul = tf.matmul(data1,data2)
matMul2 = tf.multiply(data1,data2)
matAdd = tf.add(data1,data3)
with tf.Session() as sess:
print(sess.run(matMul))# 1维
print(sess.run(matAdd))#1行2列
print(sess.run(matMul2))#1x2 2x1 = 2x2
print(sess.run([matMul,matAdd]))
import tensorflow as tf
mat0 = tf.constant([[0,0,0],[0,0,0]])
mat1 = tf.zeros([2,3])
mat2 = tf.ones([3,2])
mat3 = tf.fill([2,3],15)
with tf.Session() as sess:
print(sess.run(mat0))
print(sess.run(mat1))
print(sess.run(mat2))
print(sess.run(mat3))
import tensorflow as tf
mat1 = tf.constant([[2],[3],[4]])
mae2 = tf.zeros_like(mat1)
mat3 = tf.linspace(0.0,2.0,11)
mat4 = tf.random_uniform([2,3],-1,2)
with tf.Session() as sess:
print(sess.run(mat1))
print(sess.run(mat2))
print(sess.run(mat3))
print(sess.run(mat4))