1.介绍
ReLU(Recitified Linear Unit,ReLU),称为线性整流函数
2.常用的线性整流函数
- 斜坡函数 f(x)=max(0,x)
- Leaky ReLU
f(x)={xλxififx>0x<=0
其中 λ 是一个可通过反向传播算法学习的变量 - Randomized Leaky ReLU,相比与普通带泄露线性整流函数,带泄露随机线性整流在负输出值段的函数梯度
λ
是一个取自连续性均匀分布
U(l,u)
概率模型的随机变量
f(x)={xλxififx>0x<=0
其中 λ U(l,u),l<u且,u∈[0,1) - Noisy ReLU:是修正线性单元在考虑高斯噪声的基础上进行改进的变中激活函数,对于神经元的输出入值
x
,噪声线性整流加上了一定程度的正态分布的不确定性
f(x)=max(0,x+Y)
其中, Y N(0,σ(x))