CRC16常见几个标准的算法及C语言实现

本文详细介绍了CRC16校验码的工作原理及其不同标准的实现方式,包括CRC16_CCITT、CRC16_MODBUS等。通过具体的C语言实现代码展示了如何计算CRC16校验值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CRC码由发送端计算,放置于发送信息报文的尾部。接收信息的设备再重新计算接收到信息报文的CRC,比较计算得到的CRC是否与接收到的相符,如果两者不相符,则表明出错。
校验码的计算多项式为(X16 + X15 + X2 + 1)。具体CRC16码的计算方法是:
        1.预置1个16位的寄存器为十六进制FFFF(即全为1);称此寄存器为CRC寄存器;
        2.把第一个8位二进制数据 (既通讯信息帧的第一个字节)与16位的CRC寄存器的低8位相异或,把结果放于CRC寄存器;
        3.把CRC寄存器的内容右移一 位(朝低位)用0填补最高位,并检查右移后的移出位;
        4.如果移出位为0:重复第3步(再次右移一位);
        如果移出位为1:CRC寄存器与多项式A001(1010 0000 0000 0001)进行异或;(Modbus)
        5.重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理;
        6.重复步骤2到步骤5,进行通讯信息帧下一个字节的处理;
        7.将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC寄存器的高、低字节进行交换;
        8.最后得到的CRC寄存器内容即为:CRC码。

CRC16常见的标准有以下几种,被用在各个规范中,其算法原理基本一致,就是在数据的输入和输出有所差异,下边把这些标准的差异列出,并给出C语言的算法实现。

CRC16_CCITT多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在前,高位在后,结果与0x0000异或

CRC16_CCITT_FALSE多项式x16+x12+x5+1(0x1021),初始值0xFFFF,低位在后,高位在前,结果与0x0000异或

CRC16_XMODEM多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在后,高位在前,结果与0x0000异或

CRC16_X25多项式x16+x12+x5+1(0x1021),初始值0x0000,低位在前,高位在后,结果与0xFFFF异或

CRC16_MODBUS多项式x16+x15+x2+1(0x8005),初始值0xFFFF,低位在前,高位在后,结果与0x0000异或

CRC16_IBM多项式x16+x15+x2+1(0x8005),初始值0x0000,低位在前,高位在后,结果与0x0000异或

CRC16_MAXIM多项式x16+x15+x2+1(0x8005),初始值0x0000,低位在前,高位在后,结果与0xFFFF异或

CRC16_USB:多项式x16+x15+x2+1(0x8005),初始值0xFFFF,低位在前,高位在后,结果与0xFFFF异或

模式

多项式

初始值

数据位序

结果处理

CRC16_CCITT

x16+x12+x5+1(0x1021)

0x0000

低位在前,高位在后

与0x0000异或

CRC16_CCITT_FALSE

x16+x12+x5+1(0x1021)

0xFFFF

低位在后,高位在前

与0x0000异或

CRC16_XMODEM

x16+x12+x5+1(0x1021)

0x0000

低位在后,高位在前

与0x0000异或

CRC16_X25

x16+x12+x5+1(0x1021)

0x0000

低位在后,高位在前

与0xFFFF异或

CRC16_ MODBUS

x16+x15+x2+1(0x8005)

0xFFFF

低位在前,高位在后

与0x0000异或

CRC16_ IBM

x16+x15+x2+1(0x8005)

0x0000

低位在前,高位在后

与0x0000异或

CRC16_ MAXIM

x16+x15+x2+1(0x8005)

0x0000

低位在前,高位在后

与0xFFFF异或

CRC16_ USB

x16+x15+x2+1(0x8005)

0xFFFF

低位在前,高位在后

与0xFFFF异或

多项式产生:
如x16+x12+x5+1
x16表示第16位为1,x5表示第5位为1
(1 << 16) | (1 << 12) | (1 << 5) | (1) = 0x11021
但是CRC16只取低16位,写成16进制数就是 0x1021

CRC16的算法原理:

1.根据CRC16的标准选择初值CRCIn的值。

2.将数据的第一个字节与CRCIn高8位异或。

3.判断最高位,若该位为 0 左移一位,若为 1 左移一位再与多项式Hex码异或。

4.重复3直至8位全部移位计算结束。

5.重复将所有输入数据操作完成以上步骤,所得16位数即16位CRC校验码。

根据算法原理与标准要求就能简单的写出具体程序:

  1. unsigned short CRC16_CCITT(unsigned char *puchMsg, unsigned int usDataLen)  
  2. {  
  3.   unsigned short wCRCin = 0x0000;  
  4.   unsigned short wCPoly = 0x1021;  
  5.   unsigned char wChar = 0;  
  6.     
  7.   while (usDataLen--)     
  8.   {  
  9.         wChar = *(puchMsg++);  
  10.         InvertUint8(&wChar,&wChar);  
  11.         wCRCin ^= (wChar << 8);  
  12.         for(int i = 0;i < 8;i++)  
  13.         {  
  14.           if(wCRCin & 0x8000)  
  15.             wCRCin = (wCRCin << 1) ^ wCPoly;  
  16.           else  
  17.             wCRCin = wCRCin << 1;  
  18.         }  
  19.   }  
  20.   InvertUint16(&wCRCin,&wCRCin);  
  21.   return (wCRCin) ;  
  22. }  
  23. unsigned short CRC16_CCITT_FALSE(unsigned char *puchMsg, unsigned int usDataLen)  
  24. {  
  25.   unsigned short wCRCin = 0xFFFF;  
  26.   unsigned short wCPoly = 0x1021;  
  27.   unsigned char wChar = 0;  
  28.     
  29.   while (usDataLen--)     
  30.   {  
  31.         wChar = *(puchMsg++);  
  32.         wCRCin ^= (wChar << 8);  
  33.         for(int i = 0;i < 8;i++)  
  34.         {  
  35.           if(wCRCin & 0x8000)  
  36.             wCRCin = (wCRCin << 1) ^ wCPoly;  
  37.           else  
  38.             wCRCin = wCRCin << 1;  
  39.         }  
  40.   }  
  41.   return (wCRCin) ;  
  42. }  
  43. unsigned short CRC16_XMODEM(unsigned char *puchMsg, unsigned int usDataLen)  
  44. {  
  45.   unsigned short wCRCin = 0x0000;  
  46.   unsigned short wCPoly = 0x1021;  
  47.   unsigned char wChar = 0;  
  48.     
  49.   while (usDataLen--)     
  50.   {  
  51.         wChar = *(puchMsg++);  
  52.         wCRCin ^= (wChar << 8);  
  53.         for(int i = 0;i < 8;i++)  
  54.         {  
  55.           if(wCRCin & 0x8000)  
  56.             wCRCin = (wCRCin << 1) ^ wCPoly;  
  57.           else  
  58.             wCRCin = wCRCin << 1;  
  59.         }  
  60.   }  
  61.   return (wCRCin) ;  
  62. }  
  63.   
  64. unsigned short CRC16_X25(unsigned char *puchMsg, unsigned int usDataLen)  
  65. {  
  66.   unsigned short wCRCin = 0xFFFF;  
  67.   unsigned short wCPoly = 0x1021;  
  68.   unsigned char wChar = 0;  
  69.     
  70.   while (usDataLen--)     
  71.   {  
  72.         wChar = *(puchMsg++);  
  73.         InvertUint8(&wChar,&wChar);  
  74.         wCRCin ^= (wChar << 8);  
  75.         for(int i = 0;i < 8;i++)  
  76.         {  
  77.           if(wCRCin & 0x8000)  
  78.             wCRCin = (wCRCin << 1) ^ wCPoly;  
  79.           else  
  80.             wCRCin = wCRCin << 1;  
  81.         }  
  82.   }  
  83.   InvertUint16(&wCRCin,&wCRCin);  
  84.   return (wCRCin^0xFFFF) ;  
  85. }  
  86.   
  87. unsigned short CRC16_MODBUS(unsigned char *puchMsg, unsigned int usDataLen)  
  88. {  
  89.   unsigned short wCRCin = 0xFFFF;  
  90.   unsigned short wCPoly = 0x8005;  
  91.   unsigned char wChar = 0;  
  92.     
  93.   while (usDataLen--)     
  94.   {  
  95.         wChar = *(puchMsg++);  
  96.         InvertUint8(&wChar,&wChar);  
  97.         wCRCin ^= (wChar << 8);  
  98.         for(int i = 0;i < 8;i++)  
  99.         {  
  100.           if(wCRCin & 0x8000)  
  101.             wCRCin = (wCRCin << 1) ^ wCPoly;  
  102.           else  
  103.             wCRCin = wCRCin << 1;  
  104.         }  
  105.   }  
  106.   InvertUint16(&wCRCin,&wCRCin);  
  107.   return (wCRCin) ;  
  108. }  
  109. unsigned short CRC16_IBM(unsigned char *puchMsg, unsigned int usDataLen)  
  110. {  
  111.   unsigned short wCRCin = 0x0000;  
  112.   unsigned short wCPoly = 0x8005;  
  113.   unsigned char wChar = 0;  
  114.     
  115.   while (usDataLen--)     
  116.   {  
  117.         wChar = *(puchMsg++);  
  118.         InvertUint8(&wChar,&wChar);  
  119.         wCRCin ^= (wChar << 8);  
  120.         for(int i = 0;i < 8;i++)  
  121.         {  
  122.           if(wCRCin & 0x8000)  
  123.             wCRCin = (wCRCin << 1) ^ wCPoly;  
  124.           else  
  125.             wCRCin = wCRCin << 1;  
  126.         }  
  127.   }  
  128.   InvertUint16(&wCRCin,&wCRCin);  
  129.   return (wCRCin) ;  
  130. }  
  131. unsigned short CRC16_MAXIM(unsigned char *puchMsg, unsigned int usDataLen)  
  132. {  
  133.   unsigned short wCRCin = 0x0000;  
  134.   unsigned short wCPoly = 0x8005;  
  135.   unsigned char wChar = 0;  
  136.     
  137.   while (usDataLen--)     
  138.   {  
  139.         wChar = *(puchMsg++);  
  140.         InvertUint8(&wChar,&wChar);  
  141.         wCRCin ^= (wChar << 8);  
  142.         for(int i = 0;i < 8;i++)  
  143.         {  
  144.           if(wCRCin & 0x8000)  
  145.             wCRCin = (wCRCin << 1) ^ wCPoly;  
  146.           else  
  147.             wCRCin = wCRCin << 1;  
  148.         }  
  149.   }  
  150.   InvertUint16(&wCRCin,&wCRCin);  
  151.   return (wCRCin^0xFFFF) ;  
  152. }  
  153. unsigned short CRC16_USB(unsigned char *puchMsg, unsigned int usDataLen)  
  154. {  
  155.   unsigned short wCRCin = 0xFFFF;  
  156.   unsigned short wCPoly = 0x8005;  
  157.   unsigned char wChar = 0;  
  158.     
  159.   while (usDataLen--)     
  160.   {  
  161.         wChar = *(puchMsg++);  
  162.         InvertUint8(&wChar,&wChar);  
  163.         wCRCin ^= (wChar << 8);  
  164.         for(int i = 0;i < 8;i++)  
  165.         {  
  166.           if(wCRCin & 0x8000)  
  167.             wCRCin = (wCRCin << 1) ^ wCPoly;  
  168.           else  
  169.             wCRCin = wCRCin << 1;  
  170.         }  
  171.   }  
  172.   InvertUint16(&wCRCin,&wCRCin);  
  173.   return (wCRCin^0xFFFF) ;  
  174. }  
  1. void InvertUint8(unsigned char *dBuf,unsigned char *srcBuf)  
  2. {  
  3.     int i;  
  4.     unsigned char tmp[4];  
  5.     tmp[0] = 0;  
  6.     for(i=0;i< 8;i++)  
  7.     {  
  8.       if(srcBuf[0]& (1 << i))  
  9.         tmp[0]|=1<<(7-i);  
  10.     }  
  11.     dBuf[0] = tmp[0];  
  12.       
  13. }  
  14. void InvertUint16(unsigned short *dBuf,unsigned short *srcBuf)  
  15. {  
  16.     int i;  
  17.     unsigned short tmp[4];  
  18.     tmp[0] = 0;  
  19.     for(i=0;i< 16;i++)  
  20.     {  
  21.       if(srcBuf[0]& (1 << i))  
  22.         tmp[0]|=1<<(15 - i);  
  23.     }  
  24.     dBuf[0] = tmp[0];  
  25. }  
  26. void InvertUint32(unsigned int *dBuf,unsigned int *srcBuf)  
  27. {  
  28.     int i;  
  29.     unsigned int tmp[4];  
  30.   
  31.     tmp[0] = 0;  
  32.       
  33.     for(i=0;i< 32;i++)  
  34.     {  
  35.       if(srcBuf[0]& (1 << i))  
  36.         tmp[0]|=1<<(15 - i);  
  37.     }  
  38.     dBuf[0] = tmp[0];  
  39. }  

具体验证使用这个工具,内含CRC算法的计算,和后边的博客中提到的其他算法的工具合集

加密解密算法工具集

在这个基础上也加入CRC32 的校验算法

[html] view plain copy
  1. //CRC32算法:  
  2. unsigned int CRC32(unsigned char *puchMsg, unsigned int usDataLen)  
  3. {  
  4.   int i;  
  5.   unsigned int wCRCin = 0xFFFFFFFF;  
  6.   unsigned int wCPoly = 0x04C11DB7;  
  7.   unsigned int wChar = 0;  
  8.   while (usDataLen--)     
  9.   {  
  10.         wChar = *(puchMsg++);  
  11.         InvertUint8((unsigned char *)&wChar,(unsigned char *)&wChar);  
  12.         wCRCin ^= (wChar << 24);  
  13.         for(i = 0;i < 8;i++)  
  14.         {  
  15.           if(wCRCin & 0x80000000)  
  16.             wCRCin = (wCRCin << 1) ^ wCPoly;  
  17.           else  
  18.             wCRCin = wCRCin << 1;  
  19.         }  
  20.   }  
  21.   InvertUint32(&wCRCin,&wCRCin);  
  22.   return (wCRCin ^ 0xFFFFFFFF) ;  
  23. }  
对于CRC32可能还有其他的多项式和初始值和结果值是否需要异或以及输入数据是否需要位序倒转等要求在源码中修改

<think>好的,我现在需要帮助用户了解如何设计和实现CRC-16的校验算法,并使用C++编程环境来实现。首先,我得回顾一下CRC的基本原理,特别是CRC-16的多项式x&sup1;⁶ + x&sup1;⁵ + x&sup2; + 1。这个多项式对应的二进制形式应该是怎样的呢?通常,CRC-16有很多变种,比如CRC-16-IBM、CRC-16-CCITT等,用户提到的生成多项式是x&sup1;⁶ + x&sup1;⁵ + x&sup2; + 1,这应该是CRC-16的一种,可能对应的是CRC-16-IBM(也叫CRC-16-ANSI)。我需要确认这个多项式的正确十六进制表示,通常生成多项式的二进制是1后面跟着各个位的系数,所以x&sup1;⁶对应的位是第16位,而x&sup1;⁵是第15位,x&sup2;是第二位,x⁰是第0位。所以二进制应该是1 1000 0000 0000 0101,也就是0x8005吗?或者是不是高位在前还是低位在前的问题?这里可能存在两种表示方式,比如有的资料可能将最高位省略,因为总是1,所以剩下的16位是0x8005?需要确认这一点。 接下来,设计CRC算法的步骤通常包括以下几个部分:初始化CRC寄存器,处理输入数据的每一位或每一个字节,进行异或和移位操作,最后可能需要进行余数的处理,比如反转或者异或输出。对于CRC-16来说,通常的处理是按字节进行的,使用查表法可以提高效率。但用户可能需要一个基础的实现,所以可能需要先编写一个逐位处理的版本,然后再优化为逐字节查表的方式。不过用户的问题分为设计和实现两个部分,所以可能需要详细解释这两个步骤。 首先,生成多项式是CRC-16,即G(x) = x&sup1;⁶ + x&sup1;⁵ + x&sup2; + 1。转换成二进制的话,最高位是x&sup1;⁶,所以对应的17位二进制数是1 1000 0000 0000 0101(即第16位是1,第15位是1,第2位是1,第0位是1?)。不过这里可能有个错误,因为原式是x&sup1;⁶ +x&sup1;⁵ +x&sup2; +1,也就是对应的指数是16152、0,所以二进制位应该是从高位到低位:第16位(值为1)开始,所以对应的二进制数应该是1 1000 0000 0000 0101,即二进制为11000000000000101,对应的十六进制是0x18005?但通常CRC-16的生成多项式是16位,所以这里可能是不是把最高位省略,变成0x8005?例如,常见CRC-16-IBM的多项式是0x8005,初始值为0xFFFF,异或输出值为0xFFFF。这需要确认,可能用户提到的生成多项式对应的十六进制值是0x8005,但如果是17位的话,可能最高位的1被隐式处理,剩下的16位是0x8005。所以生成多项式的值是0x8005,对应的二进制是1000 0000 0000 0101,对吗? 接下来,设计算法的步骤。CRC的计算过程可以理解为模2除法,将数据视为多项式,除以生成多项式,得到的余数即为CRC校验码。具体步骤如下: 1. 预置一个16位的寄存器为初始值,通常是全1或全0。对于CRC-16-IBM,初始值是0xFFFF。 2. 将输入数据的每个字节按位进行处理,从高位到低位或者低位到高位,这取决于算法的规定。例如,有的CRC是左移处理,有的右移。 3. 对于每一位,将寄存器的最高位与当前数据位异或,结果决定是否与生成多项式进行异或。如果是1,则左移寄存器,然后与生成多项式的低16位异或;否则,只左移。 4. 处理完所有数据后,寄存器中的值就是CRC校验码,可能还需要与一个异或掩码进行异或,比如0xFFFF。 或者,可能更常见的是逐字节处理,每个字节与寄存器的高位进行异或,然后通过查表法快速计算余数。不过如果是基础实现的话,可能需要先写出逐位处理的代码,再优化为逐字节查表。 现在,考虑如何用C++实现。首先,初始CRC为0xFFFF,然后对每个字节进行处理,每个字节的每一位进行处理。例如,对于每个字节,从最高位到最低位,依次处理每一位。或者,可能每个字节是从最低位到最高位处理,这取决于算法的具体定义。 比如,假设数据是0x01,二进制是00000001,处理的时候是左移还是右移?如果是左移的话,可能需要处理每个字节的每一位,从最高位到最低位,或者相反? 这里可能存在两种处理方式:一种是按位处理,每次处理一个位;另一种是按字节处理,使用查表法。这里可能需要先实现按位处理,确保正确性,然后再优化。 例如,基础实现的步骤: - 初始化CRC寄存器为0xFFFF。 - 对每个输入字节,处理其中的每个位(8次循环): - 将CRC的最高位(第15位,因为寄存器是16位)与当前数据位的值异或? - 或者,将当前数据位与CRC的最高位异或,然后决定是否异或生成多项式? 可能需要更详细的分析。 例如,在逐位处理中,每个数据位会被移到CRC寄存器的最低位,或者最高位?这取决于算法的移位方向。对于左移的CRC算法,处理流程大致如下: 对于每个输入数据位: 1. 将CRC寄存器的最高位(第15位)与当前数据位异或,得到临时位。 2. 左移CRC寄存器一位。 3. 如果临时位是1,则CRC寄存器与生成多项式的值异或(生成多项式可能被表示为0x8005,即去掉最高位的1后的16位值)。 或者,另一种方式:将当前数据位与CRC寄存器的最高位异或,如果结果为1,则左移后异或生成多项式;否则,只左移。 例如,具体的步骤: 假设生成多项式是0x8005(即二进制1000 0000 0000 0101),那么当需要异或的时候,实际上是将CRC寄存器异或0x8005。但这里可能需要确认生成多项式的正确表示。例如,如果原始多项式是x^16 +x^15 +x^2 +1,那么对应的二进制是1 1000 0000 0000 0101,即17位,但通常我们处理的时候去掉最高位的1,剩下的16位是0x8005。这样,生成多项式的值就是0x8005。 接下来,初始CRC是0xFFFF。处理每个数据字节,每一位的处理步骤: 例如,处理一个字节的数据,比如0x01,二进制是00000001。假设处理顺序是从最高位到最低位(即bit7到bit0),那么对于每个位: 对于每个字节中的每一位(从高位到低位): 1. 将数据的当前位移出(比如,取bit7,然后bit6,依此类推)。 2. 将该位与CRC的最高位(第15位)异或,得到的结果作为判断条件。 3. 左移CRC寄存器一位。 4. 如果步骤2的结果是1,则异或生成多项式0x8005。 5. 重复这个过程,直到处理完所有位。 或者,另一种方式是将数据位与CRC的最低位异或,然后右移,但这种情况可能适用于不同的CRC变种。需要确定正确的处理顺序。 这里可能出现错误,比如移位方向是否正确,生成多项式是否正确。可能需要参考标准CRC-16-IBM的实现方式。例如,查阅资料发现,CRC-16-IBM的参数是: - Polynomial: 0x8005 (正常表示) - Initial value: 0xFFFF - 输入反转: False - 输出反转: True - 异或输出: 0xFFFF 或者是否输入反转指的是每个字节的位是否反转。例如,某些CRC算法在处理每个字节时会先反转位的顺序。例如,输入反转的话,处理每个字节时先反转8位。例如,CRC-16-CCITT可能会这样处理,而CRC-16-IBM可能不反转输入,直接处理。 例如,假设输入数据不需要反转,处理每个字节的位从最高位到最低位。则处理流程如下: 初始化crc为0xFFFF。 对于每个字节在数据中: 对于每个bit在字节中,从高位到低位: 将crc的最高位(第15位)右移15位得到最高位的值,然后与当前数据位异或。得到一个临时位。 将crc左移一位,丢弃最高位,最低位补0。 如果临时位是1,则crc ^= 0x8005。 这可能对吗?或者可能需要将数据位与CRC的最高位异或,然后决定是否异或多项式。 例如,正确的步骤应该是: 将数据位与CRC的最高位异或,得到一个bit。然后左移CRC,如果该bit是1,则异或生成多项式。 所以,具体步骤: 对于每个数据位: temp = (crc >> 15) ^ (current_bit); // current_bit是0或1 crc = (crc << 1) & 0xFFFF; // 左移一位,保持16位 if (temp) { crc ^= 0x8005; } 这样是否正确? 例如,初始crc是0xFFFF,处理第一个数据位。假设数据位是0: temp = (0xFFFF >>15) ^0 → 1 ^0 =1 crc左移一位,得到0xFFFE。然后,因为temp是1,异或0x8005: 0xFFFE ^ 0x8005 = 0x7FFB. 这样的计算是否正确? 可能需要更多的例子来验证。或者,参考已有的实现。 例如,查找网上的CRC-16/IBM的实现,看是否正确。例如,常见实现方式可能如下: 初始值0xFFFF,多项式0x8005,输入不反转,输出异或0xFFFF。 然后,处理每个字节的每一位,从左到右(最高位到最低位),并且每个字节处理时不反转。 例如,在代码中,逐位处理的实现可能类似于: uint16_t crc16_ibm(uint8_t *data, size_t len) { uint16_t crc = 0xFFFF; for (size_t i = 0; i < len; i++) { uint8_t byte = data[i]; for (int j = 7; j >= 0; j--) { // 处理每个bit,从高位到低位 uint8_t bit = (byte >> j) & 1; uint16_t msb = (crc >> 15) & 1; uint16_t xor_bit = msb ^ bit; crc = (crc << 1) & 0xFFFF; if (xor_bit) { crc ^= 0x8005; } } } // 输出异或0xFFFF return crc ^ 0xFFFF; } 这样是否正确?或者是否还有其他的处理步骤? 比如,在CRC-16-IBM中,最后的异或是否是必须的?例如,有些CRC算法在计算完后需要将结果与某个值异或,比如0xFFFF。例如,根据规范,CRC-16-IBM的输出是寄存器值与0xFFFF异或后的结果。所以,代码的最后应该返回crc ^ 0xFFFF。 所以,这个函数的流程是正确的吗? 比如,测试一个例子,比如空数据,则crc初始为0xFFFF,处理完后异或0xFFFF,结果为0x0000。或者是否正确? 但可能空数据的CRC可能不是这样。例如,如果数据长度为0,则返回的是初始值异或0xFFFF,即0xFFFF ^0xFFFF = 0。或者可能是否应该返回crc本身?需要确认具体的规范。 例如,根据在线CRC计算器,如果数据是空的,输入长度0,则CRC-16/IBM的结果应该是0xFFFF经过处理后异或0xFFFF的结果,所以如果处理0字节,则返回初始值0xFFFF异或0xFFFF,得到0x0000。这可能对吗? 现在,假设用户要求的是生成多项式x^16 +x^15 +x^2 +1,对应的十六进制是0x8005,并且初始值为0xFFFF,异或输出0xFFFF,则上述代码是正确的。那用户的问题中的步骤2是要求用VC++或C++实现,所以代码需要用C++编写。 接下来,逐位处理的实现可能效率较低,因此可以考虑使用查表法。查表法预先计算每个字节的可能值对应的CRC值,然后在处理每个字节时,通过查表来快速计算。这样可以将处理时间从逐位处理变为逐字节处理,提高效率。 查表法的实现步骤如下: 1. 预先生成一个256大小的表格,每个元素对应一个字节值处理后的CRC值。 2. 初始化CRC寄存器为初始值0xFFFF。 3. 对每个输入字节,将当前CRC的高8位与该字节异或,得到索引,查表得到对应的值,然后将CRC左移8位,异或查表得到的值。 4. 最终,将CRC异或0xFFFF得到结果。 或者,这可能与具体的CRC算法有关,不同的CRC算法的查表方法可能不同。例如,对于CRC-16,查表法可能需要处理每个字节的高位或低位,具体取决于算法的位处理顺序。 例如,生成查表的方法是,对于每个可能的字节值(0-255),计算该字节与CRC寄存器的高8位异或后的值,处理这8位后的CRC值,然后将这个值存入表中。这样,当处理每个字节时,可以快速查表得到对应的中间CRC值。 生成查表的具体步骤: 对于每个字节值(0-255): crc = byte << 8; for (int i = 0; i < 8; i++) { if (crc & 0x8000) { crc = (crc << 1) ^ 0x8005; } else { crc <<= 1; } } table[byte] = crc; 这可能对吗?或者,是否需要处理每个位,并与初始值相关? 或者,另一种生成表格的方式是,对于每个可能的字节值,计算该字节在初始CRC为0的情况下经过8次位处理后的值。例如: uint16_t crc_table[256]; void generate_crc_table() { for (int i = 0; i < 256; i++) { uint16_t crc = i << 8; // 初始值的高字节为i,低字节为0? for (int j = 0; j < 8; j++) { if (crc & 0x8000) { crc = (crc << 1) ^ 0x8005; } else { crc <<= 1; } } crc_table[i] = crc; } } 然后,在处理数据时: uint16_t crc = 0xFFFF; for (size_t i = 0; i < len; i++) { uint8_t byte = data[i]; uint16_t index = (crc >> 8) ^ byte; crc = (crc << 8) ^ crc_table[index & 0xFF]; } return crc ^ 0xFFFF; 这样的处理是否正确? 例如,假设初始crc是0xFFFF,处理第一个字节时,index = (0xFFFF >>8) ^ byte → 0xFF ^ byte。然后,查表得到crc_table[index],然后将原crc左移8位(变成0xFF00),然后异或查表得到的值。这可能对吗? 这可能需要验证。例如,假设生成表格的方式是否正确。或者是否需要其他处理步骤? 例如,查表法的正确性取决于表格生成的方式是否与实际位处理的方式一致。如果逐位处理的方式是正确的,那么查表法的正确性也需要通过同样的步骤来生成表格。 可能在这里,用户的问题更关注于如何实现,而逐位处理的方式虽然效率低,但更易于理解,适合教学。所以,用户可能需要先给出逐位处理的代码,然后提到可以优化为查表法。 现在,总结设计CRC校验算法的步骤: 1. 确定生成多项式:G(x) = x&sup1;⁶ +x&sup1;⁵ +x&sup2; +1 → 0x8005(去掉最高位1后的16位值)。 2. 确定参数:初始值0xFFFF,输入数据不反转,输出异或值0xFFFF。 3. 处理每个数据位,从高位到低位,逐位处理,或每个字节处理。 4. 计算CRC余数,最后异或输出值得到最终CRC。 现在,编写C++代码: 逐位处理的代码示例: #include <cstdint> uint16_t calculate_crc16(const uint8_t* data, size_t length) { uint16_t crc = 0xFFFF; // 初始值 for (size_t i = 0; i < length; ++i) { uint8_t byte = data[i]; // 处理每个字节的每个bit,从最高位到最低位 for (int j = 7; j >= 0; --j) { // 获取当前bit的值 uint8_t bit = (byte >> j) & 0x01; // 计算临时位:CRC最高位与当前bit异或 uint16_t msb = (crc >> 15) & 0x01; uint16_t temp = msb ^ bit; // 左移CRC crc = (crc << 1) & 0xFFFF; // 确保只保留16位 // 如果temp为1,异或生成多项式 if (temp) { crc ^= 0x8005; // 生成多项式0x8005 } } } // 异或输出 crc ^= 0xFFFF; return crc; } 但是需要验证这段代码的正确性。比如,测试一个已知的数据。 例如,测试空数据,length=0,函数返回0xFFFF ^ 0xFFFF = 0。这可能对吗?不一定,可能当数据长度为0时,CRC应该是初始值异或输出值。或者,如果数据长度是0,可能没有处理任何字节,所以直接返回初始值异或0xFFFF,即0。 另一个测试用例:数据是单字节0x01,处理后的CRC可能是什么? 假设数据是0x01,即二进制00000001,处理每个位: 初始crc=0xFFFF (二进制 11111111 11111111) 处理字节0x01的每一位,从最高位(第7位)到最低位(第0位): 第7位:0 → j=7时,bit=0 此时,msb是0xFFFF >>151,所以temp=1^0=1 crc左移1位,变为0xFFFE,然后异或0x8005 → 0xFFFE ^0x8005= 0x7FFB. 接下来处理第6位:0 → bit=0 msb是0x7FFB的最高位是0(0x7FFB二进制是01111111 11111011) temp=0^0=0 → crc左移一位,变为0xFFF6,不异或。 继续处理,直到处理到第0位,即最后一个bit为1。这时候可能需要逐步跟踪计算过程。 但是手动计算比较繁琐,可能需要借助已知的CRC计算工具来验证。 例如,假设数据是字节数组{0x01},长度1,计算CRC-16-IBM的结果是否与该函数的结果一致。 或者,查找在线CRC计算器,输入数据01,选择CRC-16/IBM,初始值0xFFFF,结果是否正确。 假设在线计算器给出的结果是某个值,比如假设输入0x01,得到CRC值为0xE8C1(异或后的结果),或者需要具体验证。 不过,为了确保代码正确,最好参考已有的正确实现。 另外,可能需要考虑输入数据的处理顺序是否正确,比如每个字节的位是否是从最高位到最低位处理。 例如,在CRC-16-IBM中,输入数据是否每个字节的位是高位先处理。如果是的,那么上述代码的处理顺序是正确的。 如果代码正确,那么该函数将返回正确的CRC-16值。 接下来,用户还提到使用VC++或C++环境实现,所以代码应兼容C++,比如使用uint16_t等类型,并包含必要的头文件。 对于查表法的实现,可以进一步优化: 预先生成CRC表: #include <cstdint> static uint16_t crc_table[256]; void generate_crc_table() { for (int i = 0; i < 256; ++i) { uint16_t crc = i << 8; for (int j = 0; j < 8; ++j) { if (crc & 0x8000) { crc = (crc << 1) ^ 0x8005; } else { crc <<= 1; } } crc_table[i] = crc; } } uint16_t calculate_crc16_fast(const uint8_t* data, size_t length) { uint16_t crc = 0xFFFF; for (size_t i = 0; i < length; ++i) { uint8_t byte = data[i]; // 计算查表索引:当前CRC的高8位与数据字节异或 uint16_t index = (crc >> 8) ^ byte; crc = (crc << 8) ^ crc_table[index & 0xFF]; } crc ^= 0xFFFF; // 异或输出 return crc; } 需要注意的是,generate_crc_table函数需要在程序初始化时被调用一次,以生成表。 查表法的正确性同样需要验证,可能比逐位处理更高效,但需要确保表格生成方式正确。 总结,用户的问题需要分两部分回答: 1. 设计CRC校验算法的步骤,包括多项式处理、初始值、位处理流程等。 2. 使用C++实现,提供逐位处理和查表法两种方式的代码示例,并解释原理。 同时需要确保回答符合用户的要求,结构清晰,步骤明确,并提醒可能需要注意的细节,比如多项式的正确表示、初始值和异或值,以及处理位顺序的问题。</think>### CRC校验算法设计(多项式CRC-16:x&sup1;⁶ + x&sup1;⁵ + x&sup2; +1) #### 1. 算法设计步骤 **核心参数** - **生成多项式**:$$ G(x) = x^{16} + x^{15} + x^2 + 1 \rightarrow \text{十六进制值 } 0x8005 $$ - **初始值**:$$ \text{0xFFFF} $$ - **输出处理**:最终结果与 `0xFFFF` 异或 **计算原理** CRC通过模2除法求余数。具体步骤: 1. **初始化**:16位寄存器设为 `0xFFFF`。 2. **逐位处理**: - 取数据位与寄存器最高位异或,决定是否异或多项式。 - 左移寄存器,若结果为1,则异或 `0x8005`。 3. **最终处理**:寄存器值与 `0xFFFF` 异或,得到CRC结果。 --- #### 2. C++实现代码 ##### 方法一:逐位处理(基础实现) ```cpp #include <cstdint> uint16_t calculate_crc16(const uint8_t* data, size_t length) { uint16_t crc = 0xFFFF; // 初始值 for (size_t i = 0; i < length; ++i) { uint8_t byte = data[i]; for (int j = 7; j >= 0; --j) { // 处理每个bit(高位到低位) uint8_t bit = (byte >> j) & 0x01; uint16_t msb = (crc >> 15) & 0x01; // 取CRC最高位 uint16_t temp = msb ^ bit; // 决定是否异或多项式 crc = (crc << 1) & 0xFFFF; // 左移一位 if (temp) crc ^= 0x8005; // 异或生成多项式 } } return crc ^ 0xFFFF; // 最终异或 } ``` ##### 方法二:查表法(高效实现) ```cpp #include <cstdint> uint16_t crc_table[256]; // 生成CRC表(程序初始化时调用一次) void generate_crc_table() { for (int i = 0; i < 256; ++i) { uint16_t crc = i << 8; // 初始高字节为i,低字节为0 for (int j = 0; j < 8; ++j) { if (crc & 0x8000) // 最高位为1时异或多项式 crc = (crc << 1) ^ 0x8005; else crc <<= 1; } crc_table[i] = crc; } } uint16_t calculate_crc16_fast(const uint8_t* data, size_t length) { uint16_t crc = 0xFFFF; for (size_t i = 0; i < length; ++i) { uint8_t byte = data[i]; // 查表索引 = CRC高8位 ^ 当前字节 uint16_t index = (crc >> 8) ^ byte; crc = (crc << 8) ^ crc_table[index & 0xFF]; } return crc ^ 0xFFFF; } ``` --- #### 3. 关键说明 - **多项式表示**:`0x8005` 对应 $$ x^{16} + x^{15} + x^2 + 1 $$,需去掉最高位 `x&sup1;⁶`。 - **位处理顺序**:数据字节从**高位到低位**依次处理。 - **查表法优化**:预先生成256种字节值的CRC结果,减少重复计算。 #### 4. 验证示例 ```cpp #include <iostream> int main() { uint8_t data[] = {0x01}; // 测试数据 size_t len = sizeof(data); // 逐位计算 uint16_t crc1 = calculate_crc16(data, len); std::cout << "逐位法CRC: 0x" << std::hex << crc1 << std::endl; // 查表法计算(需先生成表) generate_crc_table(); uint16_t crc2 = calculate_crc16_fast(data, len); std::cout << "查表法CRC: 0x" << std::hex << crc2 << std::endl; return 0; } ``` --- #### 5. 注意事项 - **初始值一致性**:不同CRC变种初始值可能不同,需严格
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值