最初的问题是一个跳台阶问题引出的。
一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。总共有多少种跳法,并分析算法的时间复杂度。
分析一:递归法
一个台阶那么只有一种方法。如果有两级台阶,就有跳一个台阶和挑两个台阶,就是2种方法。
当n>2时,第一次跳的时候就有两种不同的选择:
- 一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1);
- 另外一种选择是第一次跳2级,此时跳法数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2)
推广到n级台阶,就有f(n)=f(n-1)+f(n-2)
总结成公式:
/ 1 n = 1
f(n)= 2 n = 2
\ f(n-1) + f(n-2) n > 2
long long Fibonacci(unsigned int n)
{
int result[3] = {0,1,2};
if(n<=2)
return result[n];
return Fibonacci(n-1) + Fibonacci(n-2);
}
/ 1 n = 1
f(n)= 2 n = 2
4 n = 3 //111, 12, 21, 3
\ f(n-1)+f(n-2)+f(n-3) n > 3
参考代码如下:
long long Fibonacci(unsigned int n)
{
int result[2] = { 0, 1 };
if (n < 2)
return result[n];
long long a = 1, b = 0, c = 0;
for (unsigned i = 0; i < n; i++)
{
c = a + b;
b = a;
a = c;
}
return c;
}
时间复杂度为O(n),空间复杂度为O(1)。
下面转载july的相关扩展问题
1、兔子繁殖问题
13世纪意大利数学家斐波那契在他的《算盘书》中提出这样一个问题:有人想知道一年内一对兔子可繁殖成多少对,便筑了一道围墙把一对兔子关在里面。已知一对兔子每一个月可以生一对小兔子,而一对兔子出生后.第三个月开始生小兔子假如一年内没有发生死亡,则一对兔子一年内能繁殖成多少对?
分析:这就是斐波那契数列的由来,本节的跳台阶问题便是此问题的变形,只是换了种表述形式。
2、换硬币问题。
想兑换100元钱,有1,2,5,10四种钱,问总共有多少兑换方法。
const int N = 100;
int dimes[] = { 1, 2, 5, 10 };
int arr[N + 1] = { 1 };
for (int i = 0; i < sizeof(dimes) / sizeof(int); ++i)
{
for (int j = dimes[i]; j <= N; ++j)
{
arr[j] += arr[j - dimes[i]];
}
}