Spark 2.1.0 入门:特征抽取–Word2Vec(Python版)

93 篇文章 1 订阅
47 篇文章 3 订阅

Word2Vec 是一种著名的 词嵌入(Word Embedding) 方法,它可以计算每个单词在其给定语料库环境下的 分布式词向量(Distributed Representation,亦直接被称为词向量)。词向量表示可以在一定程度上刻画每个单词的语义。

如果词的语义相近,它们的词向量在向量空间中也相互接近,这使得词语的向量化建模更加精确,可以改善现有方法并提高鲁棒性。词向量已被证明在许多自然语言处理问题,如:机器翻译,标注问题,实体识别等问题中具有非常重要的作用。

​ Word2vec是一个Estimator,它采用一系列代表文档的词语来训练word2vecmodel。该模型将每个词语映射到一个固定大小的向量。word2vecmodel使用文档中每个词语的平均数来将文档转换为向量,然后这个向量可以作为预测的特征,来计算文档相似度计算等等。

​ Word2Vec具有两种模型,其一是 CBOW ,其思想是通过每个词的上下文窗口词词向量来预测中心词的词向量。其二是 Skip-gram,其思想是通过每个中心词来预测其上下文窗口词,并根据预测结果来修正中心词的词向量。两种方法示意图如下图所示:
cbow
skip
ml库中,Word2vec 的实现使用的是skip-gram模型。Skip-gram的训练目标是学习词表征向量分布,其优化目标是在给定中心词的词向量的情况下,最大化以下似然函数:

  \[\frac{1}{T}\sum_{t=1}^{T}\sum_{j=-k}^{j=k}log{p(w_{t+j}|w_t)}\]

其中,

  \[w_1\]

….

  \[w_t\]

是一系列词序列,这里

  \[w_t\]

代表中心词,而

  \[w_{t+j} (j \in [-k,k])\]

是上下文窗口中的词。
  这里,每一个上下文窗口词

  \[w_i\]

在给定中心词

  \[w_j\]

下的条件概率由类似 Softmax 函数(相当于Sigmoid函数的高维扩展版)的形式进行计算,如下式所示,其中

  \[u_w\]

  \[v_w\]

分别代表当前词的词向量以及当前上下文的词向量表示:

  \[p(w_i|w_j) = \frac{exp(u_{w_i}^{T}v_{w_j})}{\sum_{l=1}^{V}{exp(u_l^Tv_{w_j})}}\]

​ 因为Skip-gram模型使用的softmax计算较为复杂,所以,ml与其他经典的Word2Vec实现采用了相同的策略,使用Huffman树来进行 层次Softmax(Hierachical Softmax) 方法来进行优化,使得

  \[\log{p(w_i|w_j)}\]

计算的复杂度从

  \[O(V)\]

下降到

  \[O(log(V))\]

​ 在下面的代码段中,我们首先用一组文档,其中一个词语序列代表一个文档。对于每一个文档,我们将其转换为一个特征向量。此特征向量可以被传递到一个学习算法。

下面介绍ML库中Word2Vec类的使用。
我们默认名为spark的SparkSession已经创建。

​在下面的代码段中,我们首先用一组文档,其中一个词语序列代表一个文档。对于每一个文档,我们将其转换为一个特征向量。此特征向量可以被传递到一个学习算法。

​首先,导入Word2Vec所需要的包,并创建三个词语序列,每个代表一个文档:

from pyspark.ml.feature import Word2Vec
documentDF = spark.createDataFrame([
    ("Hi I heard about Spark".split(" "), ),
    ("I wish Java could use case classes".split(" "), ),
    ("Logistic regression models are neat".split(" "), )
], ["text"])

新建一个Word2Vec,显然,它是一个Estimator,设置相应的超参数,这里设置特征向量的维度为3,Word2Vec模型还有其他可设置的超参数,具体的超参数描述可以参见这里

word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="text", outputCol="result")

读入训练数据,用fit()方法生成一个Word2VecModel。

model = word2Vec.fit(documentDF)

利用Word2VecModel把文档转变成特征向量。

result = model.transform(documentDF)
for row in result.collect():
    text, vector = row
    print("Text: [%s] => \nVector: %s\n" % (", ".join(text), str(vector)))
 
 
Text: [Hi, I, heard, about, Spark] => 
Vector: [0.0127797678113,-0.0934097565711,-0.108308439702]
 
Text: [I, wish, Java, could, use, case, classes] => 
Vector: [0.0761276933564,0.0345174372196,-0.0429060061329]
 
Text: [Logistic, regression, models, are, neat] => 
Vector: [-0.0675941422582,0.0452983468771,0.0530217912048]
 

可以看到,文档被转变为了一个3维的特征向量,这些特征向量就可以被应用到相关的机器学习方法中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值