论文浅尝 | 基于图注意力的常识对话生成
OpenKG 祝各位读者新春快乐,猪年吉祥!
来源:IJCAI 2018.
论文下载地址:https://www.ijcai.org/proceedings/2018/0643.pdf
项目源码地址:https://github.com/tuxchow/ccm
动机
在以前的工作中,对话生成的信息源是文本与对话记录。但是这样一来,如果遇到OOV 的词,模型往往难以生成合适的、有信息量的回复,而会产生一些低质量的、模棱两可的回复,这种回复往往质量不高。
为了解决这个问题,有一些利用常识知识图谱生成对话的模型被陆续提出。当使用常识性知识图谱时,由于具备背景知识,模型更加可能理解用户的输入,这样就能生成更加合适的回复。但是,这些结合了文本、对话记录、常识知识图谱的方法,往往只使用了单一三元组,而忽略了一个子图的整体语义,会导致得到的信息不够丰富。
为了解决这些问题,文章提出了一种基于常识知识图谱的对话模型(commonsense knowledge aware conversational model,CCM)来理解对话,并且产生信息丰富且合适的回复。本文提出的方法,利用了大规模的常识性知识图谱。首先是理解用户请求,找到可能相关的知识图谱子图;再利用静态图注意力(static graphattention)机制,结合子图来理解用户请求;最后使用动态图注意力(dynamic graph attention)机制来读取子图,并产生合适的回复。
通过这样的方法,本文提出的模型可以生成合适的、有丰富信息的对话,提高对话系统的质量。
贡献
文章的贡献有:
(1)首次尝试使用大规模常识性知识图谱来处理对话生成问题;
(2)对知识图谱子图,提出了静态/动态图注意力机制来吸收常识知识,利于理解用户请求与生成对话;
(3)对比于其他系统,目前的模型生成的回复是最合适的、语法最正确的、信息最丰富的。
方法
⒈ Encoder-Decoder 模型
经典的Encoder-Decoder模型是基于sequence-to-sequence(seq2seq)的。encoder模型将用户输入(user post)X=x_1 x_2…x_n 用隐状态 H=h_1 h_2…h_n 来表示。而decoder模型使用另一个GRU来循环生成每一个阶段的隐状态,即 。在解码过程中利用了注意力机制。
当decoder模型根据概率分布生成了输出状态后,可以由这个状态经过softmax操作得到最终的输出: 。可以看到,在这个经典的encoder-decoder模型中,并没有图的参与。
⒉模型框架
如下图1所示为本文提出的CCM模型框架。
图1 CCM模型框架
如图1所示,基于n个词输入,会输出n个词作为回复,模型的目的就是预估这么一个概率分布: ,即将图信息 G 加入到概率分布的计算中。在信息读取时,根据每个输入的词x,找到常识知识图谱中对应的子图(若没有对应的子图,则会生成一个特殊的图Not_A_Fact),每个子图又包含若干三元组。
⒊知识编译模块
如图2所示,为如何利用图信息编译post的示意图。
图2 知识编译模块
如图所示,当编译到“rays”时,会把这个词在知识图谱中相关的子图得到(图2最上的黄色高两部分),并生成子图的向量。每一个子图都包含了key entity(即这里的rays),以及这个“rays”的邻居实体和相连关系。对于词“of”,由于无法找到对应的子图,所以就采用特殊子图Not_A_Fact来编译。之后,采用基于静态注意力机制,CCM会将子图映射为向量,然后把词向量 w(x_t) 和 g_i 拼接为 ,并将这个替换传统encoder-decoder中的 e(x_t) 进行GRU计算。
对于静态图注意力机制,CCM是将子图中所有的三元组都考虑进来,而不是只计算一个三元组,这也是该模型的一个创新点。
⒋知识生成模块
如下图3所示,为如何利用图信息生成回复的示意图。
图3 知识生成模块
在生成时,不同于静态图注意力机制,模型会读取所有相关的子图,而不是当前词对应的子图,而在读取时,读取注意力最大的就是图中粉色高亮的部分。生成时,会根据计算结果,来选择是生成通用字(generic word)还是子图中的实体。
⒌损失函数
损失函数为预期输出与实际输出的交叉熵,除此之外,为了监控选择通用词还是实体的概率,又增加了一个交叉熵。
实验
⑴ 实验相关细节
常识性知识图谱选用了ConceptNet,对话数据集选用了reddit的一千万条数据集,如果一个post-response不能以一个三元组表示(一个实体出现于post,另一个出现于response),就将这个数据去除。然后对剩下的对话数据,分为四类,一类是高频词,即每一个post的每一个词,都是最高频的25%的词;一类是中频词,即25%-75%的词;一类是低频词,即75%-100%的词;最后一类是OOV词,每一个post包含了OOV的词。
而基线系统选择了如下三个:只从对话数据中生成response的seq2seq模型、存储了以TransE形式表示知识图谱的MemNet模型、从三元组中copy一个词或生成通用词的CopyNet模型。
而选用metric的时候,采用了刻画回复内容是否语法正确且贴近主题的perplexity,以及有多少个知识图谱实体被生成的entity score。
⑵ 实验结果
如下图4所示,为根据perplexity和entity score进行的性能比较,可见CCM的perplexity最低,且选取entity的数量最多。并且,在低频词时,选用的entity更多。这表示在训练时比较罕见的词(实体)会需要更多的背景知识来生成答复。
图4 CCM与基线系统对比结果
另外,作者还采用众包的方式,来人为审核response的质量,并采用了两种度量值appropriateness(内容是否语法正确,是否与主题相关,是否有逻辑)与informativeness(内容是否提供了post之外的新信息)。如下图5所示,为基于众包的性能比较结果。
图5 CCM与基线系统基于众包的对比结果
从图5中可见,CCM对于三个基线系统来说,都有将近60%的回复是更优的。并且,在OOV的数据集上,CCM比seq2seq高出很多,这是由于CCM对于这些低频词或未登录词,可以用知识图谱去补全,而seq2seq没有这样的知识来源。
如下图6所示,当在post中遇到未登录词“breakable”时,seq2seq和MemNet都只能输出一些通用的、模棱两可的、毫无信息量的回复。CopyNet能够利用知识图谱输出一些东西,但是并不合适。而CCM却可以输出一个合理的回复。
图6 case study
总结
本文提出了一种结合知识图谱信息的encoder-decoder方法,引入静态/动态图注意力机制有效地改善了对话系统中response的质量。通过自动的和基于众包的形式进行性能对比,CCM模型都是优于基线系统的。