Ubuntu创建新用户并增加管理员权限

某些情况下,Ubuntu 使用useradd 新用户名,在home 文件夹下面看不到新创建的用户文件夹,例如: root@worker:/home/kuku# useradd spark root@worker:/home/kuku# passwd spark Enter new UNI...

2018-01-31 17:05:06

阅读数:1537

评论数:0

定时任务框架APScheduler学习详解

定时任务框架APScheduler学习详解 APScheduler简介 在平常的工作中几乎有一半的功能模块都需要定时任务来推动,例如项目中有一个定时统计程序,定时爬出网站的URL程序,定时检测钓鱼网站的程序等等,都涉及到了关于定时任务的问题,第一时间想到的是利用time模块的time....

2018-01-30 14:37:37

阅读数:463

评论数:0

Using Keras and Deep Q-Network to Play FlappyBird

200 lines of python code to demonstrate DQN with Keras Overview This project demonstrates how to use the Deep-Q Learning algorithm with Ker...

2018-01-30 11:03:59

阅读数:158

评论数:0

什么是迁移学习 (Transfer Learning)?这个领域历史发展前景如何?

深度神经网络,相比于之前的传统机器学习方法,可以看成是一个全新的物种,这背后的原因,最明显的还是深度学习对机器算力的巨大需求,在深度学习入门最少需要知道什么?中介绍了深度学习所需的显卡资源,而当前大内存的机器不贵,而高性能,大显存的显卡就没那么便宜了。这使得使用深度学习去处理实际生活中遇到的问题,...

2018-01-30 09:40:40

阅读数:9591

评论数:4

剖析勇士如何成为新赛季夺冠热门:基于Spark GraphFrames的金州勇士传球网络分析

databricks 最近发布了 GraphFrames,这是一个用 DataFrames 封装图处理过程的Spark插件。 我评估了网络分析并且利用丰富的NBA.com的数据对金州勇士的传球网络进行可视化。 金州勇士的传球网络 传接球 联盟 MVP Stephen...

2018-01-26 13:42:11

阅读数:193

评论数:0

#####好好好####keras之预训练模型Application

Application应用 Kera的应用模块Application提供了带有预训练权重的Keras模型,这些模型可以用来进行预测、特征提取和finetune 模型的预训练权重将下载到~/.keras/models/并在载入模型时自动载入 可用的模型 应用于图像分类的模型,权重训练自Ima...

2018-01-26 09:19:05

阅读数:430

评论数:0

keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)

不得不说,这深度学习框架更新太快了尤其到了Keras2.0版本,快到Keras中文版好多都是错的,快到官方文档也有旧的没更新,前路坑太多。  到发文为止,已经有theano/tensorflow/CNTK支持keras,虽然说tensorflow造势很多,但是笔者认为接下来Keras才是正道。 ...

2018-01-25 19:18:09

阅读数:112

评论数:0

keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完美案例(五)

之前在博客《keras系列︱图像多分类训练与利用bottleneck features进行微调(三)》一直在倒腾VGG16的fine-tuning,然后因为其中的Flatten层一直没有真的实现最后一个模块的fine-tuning。  看到github上有一份InceptionV3的fine-t...

2018-01-25 19:14:10

阅读数:115

评论数:0

###好好好######fine-tuning:利用已有模型训练其他数据集

尝试了将前面层的lr调成0,只训练全连接层,结果放在了每个微调网络的最后; 另外添加了50层的ResNet进行fine-tuning,结果得到了进一步的提高,超越了SVM在这一数据集上的最佳performance(87%) -----------------------------...

2018-01-25 10:01:43

阅读数:117

评论数:0

phoenix全局索引/本地索引测试以及hive连接教程

phoenix全局索引/本地索引测试以及hive连接教程。 1.测试表说明 原hbase表是只有1个列族,算上rowkey一共6个字段的hbase表。 一共37个regions,数据量一共3亿6千4百万 hbase中表描述 数据样例 数据量 2.建立索引 ...

2018-01-24 17:04:25

阅读数:468

评论数:0

卷积:如何成为一个很厉害的神经网络

什么是卷积神经网络?又为什么很重要? 卷积神经网络(Convolutional Neural Networks, ConvNets or CNNs)是一种在图像识别与分类领域被证明特别有效的神经网络。卷积网络已经成功地识别人脸、物体、交通标志,应用在机器人和无人车等载具。 图1 在上面的图1...

2018-01-22 10:19:20

阅读数:338

评论数:0

keras实现LeNet-5模型

先放一张LeNet-5模型的结构图 关于LeNet-5模型每层具体的参数个数和如何连接本文不讲述,想了解的读者点击这个链接。 下面的代码是使用keras实现,以theano为后端。 #encoding:utf-8 from keras.datasets import mnist from...

2018-01-22 10:17:40

阅读数:280

评论数:0

XGBoost参数调优完全指南(附Python代码)

译注:文内提供的代码和运行结果有一定差异,可以从这里下载完整代码对照参考。另外,我自己跟着教程做的时候,发现我的库无法解析字符串类型的特征,所以只用其中一部分特征做的,具体数值跟文章中不一样,反而可以帮助理解文章。所以大家其实也可以小小修改一下代码,不一定要完全跟着教程做~ ^0^需要提前安装好的...

2018-01-19 17:54:17

阅读数:123

评论数:0

#####好好好#####tensorflow conv2d的padding解释以及参数解释

1、padding的方式: 说明: 1、摘录自http://stackoverflow.com/questions/37674306/what-is-the-difference-between-same-and-valid-padding-in-tf-nn-max-poo...

2018-01-16 09:16:08

阅读数:116

评论数:0

DCGAN基于Keras的实现

前几天学习了一下GAN的相关知识,有NIPS 2016中的教程,  还有知乎专栏的令人拍案叫绝的Wasserstein GAN,以及后续Wasserstein GAN最新进展:从weight clipping到gradient penalty,更加先进的Lipschitz限制手法  这两篇...

2018-01-12 11:32:08

阅读数:303

评论数:0

pytorch入门教程(一):Tensor###tensor好好好####

Zen君的配置是macbook pro,升级到Mac Serria安装不了qt,无法显示图片,好在发现了pytorch,正好Zen君以前也玩过python的,所以非常激动。这个教程系列也是趁着心情激动写下来的,不知道会不会持续更新,暂时别抱有期待:) 一、pytorch安装安装pytorch之前,...

2018-01-08 14:17:29

阅读数:125

评论数:0

keras上手之:与tensorflow混合编程 (tensorboard)

tensorflow具备许多优秀的函数和功能,比如tensorboard,keras作为tensorflow的高级API, 封装很多tensorflow的代码,使得代码模块化,非常方便。 当然,由于keras的模型和层与tensorflow的张量高度兼容,可以用keras建模,用tensorfl...

2018-01-08 13:45:10

阅读数:1431

评论数:0

Keras 层layers总结

1.Dense 全连接层(对上一层的神经元进行全部连接,实现特征的非线性组合) keras.layers.core.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_i...

2018-01-05 17:53:11

阅读数:958

评论数:0

keras中自定义验证集的性能评估(ROC,AUC)

在keras中自带的性能评估有准确性以及loss,当需要以auc作为评价验证集的好坏时,就得自己写个评价函数了: [python] view plain copy from sklearn.metrics import roc_auc_score   ...

2018-01-05 14:15:49

阅读数:846

评论数:0

MCMC(Markov Chain Monte Carlo) and Gibbs Sampling

1.   随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Monte Carlo Simulation)。这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆、冯.诺依曼、费米、费曼、Nicholas Metropolis, ...

2018-01-03 11:42:37

阅读数:262

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭