在计算矩阵行列式时需要判断求和公式中矩阵元素第二个脚标的排列的奇偶性来决定这一求和项的正负。
定义:降序次数为偶数的排列为偶排列;降序次数为奇数的排列为奇排列。
例如排列(2,3,1):从左往右看,2与其后元素相比有降序,即2大于1;3与其后元素相比有降序,即3大于1;1无降序;则排列降序次数为2次,因此为偶排列。
例如排列(1,3,2):从左往右看,1与其元素无降序,3与其后元素有降序,2无降序;因此其排列降序次数为1,为奇排列。
在计算矩阵行列式时需要判断求和公式中矩阵元素第二个脚标的排列的奇偶性来决定这一求和项的正负。
定义:降序次数为偶数的排列为偶排列;降序次数为奇数的排列为奇排列。
例如排列(2,3,1):从左往右看,2与其后元素相比有降序,即2大于1;3与其后元素相比有降序,即3大于1;1无降序;则排列降序次数为2次,因此为偶排列。
例如排列(1,3,2):从左往右看,1与其元素无降序,3与其后元素有降序,2无降序;因此其排列降序次数为1,为奇排列。