计算矩阵行列式时奇排列与偶排列的判定

在计算矩阵行列式时需要判断求和公式中矩阵元素第二个脚标的排列的奇偶性来决定这一求和项的正负。

定义:降序次数为偶数的排列为偶排列;降序次数为奇数的排列为奇排列。

例如排列(2,3,1):从左往右看,2与其后元素相比有降序,即2大于1;3与其后元素相比有降序,即3大于1;1无降序;则排列降序次数为2次,因此为偶排列。

例如排列(1,3,2):从左往右看,1与其元素无降序,3与其后元素有降序,2无降序;因此其排列降序次数为1,为奇排列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值