asix参数含义
原文请见:Python Pandas与Numpy中axis参数的二义性
从例子入手:
>>>df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], \
columns=["col1", "col2", "col3", "col4"])
>>>df
col1 col2 col3 col4
0 1 1 1 1
1 2 2 2 2
2 3 3 3 3
>>> df.mean(axis=1)
0 1
1 2
2 3
>>> df.drop("col4", axis=1)
col1 col2 col3
0 1 1 1
1 2 2 2
2 3 3 3
df.mean(axis=1)其实是在每一行上取所有列的均值,而不是保留每一列的均值,简单来说就是axis=0代表往跨行(down),而axis=1代表跨列(across)。
Pandas保持了Numpy对关键字axis的用法:
轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。
所以问题当中第一个例子df.mean(axis=1)代表沿着列水平方向计算均值,而第二个列子df.drop(name, axis=1) 代表将name对应的列标签沿着水平的方向依次删掉。
下图代表在DataFrame当中axis为0和1时分别代表的含义:
读取csv文件报错
Pandas读去csv文件时,若csv文件名含有中文或者文件路径含有中文,则会报错如下:
OSError: Initializing from file failed
为了避免此种情况,一方面可以尽量保证使用英文命名,另一方面可以使用 open 方法先打开文件在使用 pandas.read_csv 方法读取:
test = pd.read_csv(open("data/得分tips.csv"))
透视表功能
使用Pandas实现数据透视功能
pd.pivot_table(df, //数据源
index=["Manager","Status"], //行
values=["Quantity","Price"], //值
aggfunc={"Quantity":len,"Price":np.sum},fill_value=0) //不同值的透视方法