漫步数学分析三——开集

为了定义开集,我们首先介绍 εdisc 的概念。

1 对于每个固定的 xRn 以及 ε>0 ,集合

D(x,ε)={yRn|d(x,y)<ε}

称为关于 x εdisc(也称为 ε 邻域(neighborhood)或 ε 球(ball))如图1所示。对于集合 ARn ,如果存在一个 ε>0 使得 D(x,ε)A ,那么就称该集合为开的。


这里写图片描述
图1:邻域

有一点非常重要,那就是 ε 依赖于 x 。例如,R2 中的不包含边界的单位球为开的,但是当我们靠近边界的时候, ε 就需要变得越小。然而需要注意的是对于任意 x ε不能等于0,如图2所示。


这里写图片描述
图2:开集

考虑 R=R1 中的一个开区间,如 (0,1) 。事实上,它是一个开集(如图3所示),然而如果我们将其看成 R2 中的区间( x 轴的一个子集),那么它就不是开的,所以说明一个集合是否为开时,首先需要指定所使用的的Rn


这里写图片描述
图3:一维与二维的情况

有许多不是开集的例子,像 R2 中的闭单位圆 {xR2|x1} ,因为边界上有点所以它不是开的(也就是说有点 x 满足x=1),每个 εdisc 包含不在该集合中的点,如图4所示。


这里写图片描述
图4:非开集

1 Rn 中,对于每个 ε>0,xRn ,那么集合 D(x,ε) 是开的。

该定理证明的主要思想包含在图5中,注意在这幅图中关于点 yD(x,ε) 距离大小随着 y 靠近边界而变得越来越小,从图中可以感觉此定理是显然的。

开集遵守的一些法则如下。

2

(i) Rn 中有限个开子集的交是 Rn 的开子集。
(ii) Rn 中任意个开子集的交是 Rn 的开子集。

这个结果可能不太直观,断言 (i) (ii) 的差别让我们意识到任意开集的交可能不是开集。例如 R1 中,一个点(它不是开集)是所有包含它的开集之并(why?),之后内容将严重依赖定理2给出的开集基本性质()。

注意:满足定理2法则的一组子集或空集 或整个空间称为拓扑空间,这里我们不讨论一般的拓扑空间而是只限于 Rn 的情况,然而,下面讨论的内容可以应用到许多情况中。


这里写图片描述
图5:邻域为开集

1 S={(x,y)R2|0<x<1} ,说明 S 是开集。


这里写图片描述
图6:集合S

从图6我们可以看出,每个点 (x,y)S ,我们可以画出半径 r=min{x,1x} 的邻域并且其全部含于 S ,因此根据定义可知S是开集。

2 S={(x,y)R2|0<x1} S 是开集吗?

答案为否,因为关于 (1,0)S 的邻域包含点 (x,0) ,其中 x>1

3 ARn 是开集且 BRn ,定义

A+B={x+yRn|xA,yB}

证明 A+B 是开集。

xA,yB ,使得 x+yA+B 。根据定义,有一个 ε>0 使得 D(x,ε)A ,我们需要证明 D(x+y,ε)A+B 。事实上,令 zD(x+y,ε) 使得 d(x+y,z)<ε ,但是 d(x+y,z)=d(x,zy) ,所以 zyA ,那么 z=(zy)+yA+B ,由此可得 D(x+y,ε)A+B ,所以 A+B 是开集。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值