漫步凸分析八——回收锥与无界

Rn 中的有界闭子集通常比无界的更容易处理,然而,当集合为凸时,无界的困难度就下降很多,这实在是一大幸事,因为我们考虑的许多集合像上境图从他们的性质可知是无界的。

根据我们的直观理解,无界闭凸集在无穷远处行为比较简单,假设 C 是这样的一个集合并且x C 中的一点,那么似乎C必须包含以 x 为起点的某个整条半线,否则的话这就与无界相矛盾。这条半线的方向似乎不依赖于x C 中从另一个以y为起点的半线很明显仅仅是以 x 为起点的半线平移得到的,这些方向可以看成C中位于无穷远处的理想点,经过几何投影后得到一个水平点。那么 C 中以x为起点的半线可以理解成连接 x 与这种理想点之间的线段。

下面我们就需要将这些直观概念放到坚实的数学基础上并将其应用到凸函数的学习中。

首先我们来看如果将方向的概念形式化,Rn中的每个半线应该有一个方向,如果两条半线互相之间通过平移可以得到,那么他们的方向是一样的,因为我们将 Rn 中的方向定义为 Rn 中等价关系下的所有闭半线集,这个等价关系是半线 L1 是半线 L2 的平移得到的,那么根据定义,半线 {x+λy|λ0},y0 的方向就是半线平移后得到的所有半线集合,它与 x 无关,我们也可以成它为y的方向。对于 Rn 中的两个向量,当且仅当他们互相是正倍数关系时,他们的方向相同,零向量没有方向,谈到这,相信大家对于给定方向的反方向是何意都会很清楚了。

Rn 中的点和 Rn+1 中超平面 M={(1,x)|xRn} 的点有很自然的对应关系,点 xRn 可以用射线 {λ(1,x)|λ0} 表示,那么 Rn 的方向可以用射线 {λ(0,y)|λ0},y0 表示,这条射线位于平行于 M 且过Rn+1原点的超平面上,这表明可以将 Rn 的方向看成 Rn 中无穷远处的点。(这个用法不同于投影集合)对于 Rn+1 中两条射线的凸包,他们与 M 相交的部分对应于Rn中表示他们的线段,如果一条射线表示无穷远处的一点,那么我们得出的不是线段而是一条半线。

C Rn中的非空凸集,当 C 包含所有以C中点为起点,方向是 D 的半线时,我们称C在方向 D 上回退(recede),换句话说,C y,y0 方向上回退,当且仅当对于每个 λ0,xC x+λyC 。 所有满足这个条件的向量 yRn 的集合(包括y=0)称为 C 的回收锥(recession cone),C的回收锥将用 0+C 表示,究其原因,不久进行解释。 C 回退的方向也称之为C的回收方向。

在其他地方, cl C 的回收锥也称为 C 的渐近锥(asymptotic cone),这里我们不采用这个术语,因为它与渐近线(asymptote)和渐近(asymptotic)的其他用法不一致,可能引起歧义。

8.1 C 是非空凸集,那么回收锥0+C是包含原点的凸锥,它与使得 C+yC 的向量 y 的集合是一样的。

每个 y0+C 有一个性质,即对于每个 xC,x+yC ,也就是 C+yC 。另一方面,如果 C+yC ,那么

C+2y=(C+y)+yC+yC

等等,这就表明对于每个 xC 和正整数 m,x+myC ,那么根据凸性,加入点 xC,x+y,x+2y 的线段都包含在 C 中,这样的话对于每个λ0,x+λyC,所以 y0+C 。因为正标量乘法不改变方向,所以 0+C 就是一个锥,接下来就剩证明 0+C 的凸性。如果 y1,y2 0+C 中的向量且 0λ1 ,我们有

(1λ)y1+λy2+C=(1λ)(y1+C)+λ(y2+C)(1λ)C+λC=C

(利用定理3.2的分配率)因此 (1λ)y1+λy2 0+C 中。 ||

这里举一些 R2 中凸集合回收锥的例子,对于凸集

C1C2C3C4={(ξ1,ξ2)|ξ1>0,ξ21/ξ1}={(ξ1,ξ2)|ξ2ξ21}={(ξ1,ξ2)|ξ21+ξ221}={(ξ1,ξ2)|ξ1>0,ξ2>0}{(0,0)}

我们有

0+C10+C20+C30+C4={(ξ1,ξ2)|ξ10,ξ20}={(ξ1,ξ2)|ξ1=0,ξ20}={(ξ1,ξ2)|ξ1=0=ξ2}={(0,0)}={(ξ1,ξ2)|ξ1>0,ξ2>0}{(0,0)}=C4

当然,非空仿射集 M 的回收锥是平行于M的子空间 L ,如果C Rn 上弱线性不等式组的解集,

C={x|x,biβ,iI}

C 的回收锥是由对应的齐次不等式组给出,很容易证实:

0+C={x|x,bi0,iI}

Rn 中的点用上面介绍的 Rn+1 中射线表示时,非空凸集 C 可以表示成这些射线的并,这个并是凸锥

K={(λ,x)|λ0,xλC}

除了原点外,全都位于开半空间 {(λ,x)|λ>0} 上,现在我们考虑如何将 K 放大成形如KK0的凸锥,其中 K0 是位于超平面 {(0,x)|xRn} 中的一个锥。因为 K 已经是一个锥了,要想使KK0是凸锥的充分必要条件是 K0 是凸集并且 K+K0KK0 (定理2.6)。当且仅当每个 (1,x)K0 满足:对每个 (1,x)K (1,x)+(0,x) 属于 K ,那么我们有K+K0KK0,这个性质意味着对每个 xC,x+xC ,因此根据定理8.1可知 x0+C ,那么在半空间 {(λ,x)|λ0} 中存在一个唯一的最大凸锥 K ,它与半空间 {(λ,x)|λ>0} 的交集是 K{(0,0)} ,即

K={(λ,x)|λ>0,xλC}{(0,x)|x0+C}

这时候, 0+C 可以看成 λ0+ λC 的值。

8.2 C Rn中的非空闭凸集,那么 0+C 是闭的并且它有形如 λ1x1 , λ2x2 , 序列的所有可能极限组成,其中 xiC,λi0 。 事实上,对于由 {(1,x)|xC} 生成的 Rn+1 中的凸锥 K ,我们有

cl K=K{(0,x)|x0+C}

超平面 M={(1,x)|xRn} 肯定和 ri K 相交(推论6.8.1),所以根据推论6.5.1中的闭包法则我们有

Mcl K=cl(MK)=MK={(1,x)|xC}

因此定理前面刚刚定义的锥 K 肯定包含 cl K ,因为其最大属性。另一方面,因为 K 包含在半空间 H={(λ,x)|λ0} 中且与 int H 相交,所以 ri K 肯定完全包含在 int H 中(推论6.5.2),因此 ri KK 时我们有

cl KKcl(ri K)cl K

这就证明了定理中的公式 cl K=K ,集合 {(0,x)|x0+C} cl K {(0,x)|xRn} 的交集,所以它是闭的且由形如 λ1(1,x1),λ2(1,x2), 序列的极限组成,其中 xiC,λi0 ||

有一个事实是当 C 不是闭的,那么0+C将不是闭的,如上面 C4 所示。

假设 C 是闭的凸集且z是这样的一个点,对于某个 xC x,z 线段之间的相对内点位于 C 中,那么zC,这样的话对于每个 xC ,相同的性质同样成立。下一个定理可以看成将这个事实推广到 z 是无穷远处的情况。

8.3 C 是非空闭凸集并且y0,如果存在一个 x ,使得半线{x+λy|λ0}包含在 C 中,那么对于每个xC,该结论同样成立,即我们有 y0+C 。甚至对于每个 xri C,{x+λy|λ0} 包含在 ri C 中,这样的话 y0+(ri C)

{x+λy|λ0} 包含在 C 中,那么y是序列 λ1x1,λ2x2, 的极限,其中 λk=1/k,xk=x+kyC ,于是根据定理8.2 可知 y0+C 。定理的另一个断言从以下事实即可得到: C 中与ri C相交的任何线段肯定有内点在 ri C 中(定理6.1)。 ||

8.3.1 对于任意非空凸集 C ,我们有0+(ri C)=0+(cl C),事实上,给定任意 xri C ,当且仅当对于每个 λ>0,x+λyC 时,我们有 y0+(cl C)

8.3.2 如果 C 是包含原点的闭凸集,那么

0+C={y|ε1yC,ε>0}=ε>0εC

8.3.3 如果 {Ci|iI} Rn 中的任意闭凸集,且他们的交集不为空,那么

0+(iICi)=iI0+Ci

x 是闭凸集C=iICi中的任意一点,给定一个向量 y ,当且仅当半线{x+λy|λ0}包含在每个 Ci 中时, y 的方向是C回退的方向,但是这也意味着每个 Ci y 方向上回退。

8.3.4 A 是从Rn Rm 的线性变换, C Rm 中的闭凸集,使得 A1C ,那么 0+(A1C)=A1(0+C)

因为 A 是连续的并且C是闭的,所以 A1C 是闭的。取 xA1C ,当且仅当对每个 λ0 时, C 包含A(x+λy)=Ax+λAy,我们有 y0+(A1C) ,这就意味着 Ay0+C yA1(0+C) ||

C 不为闭时,定理8.3的第一个断言不满足:上面的C4 包含形如 (1,1)+λ(1,0) 的所有点组成的半线,但是 (1,0) 不属于 0+(ri C4) ,另外联系到推论8.3.1, 我们还能看出 0+(ri C4) 0+C4 要适当的大一点。

任何无界闭凸集至少包含一个无穷远处的点,即至少有一个回退方向,我们在接下里的定理中说明这个问题。因此,无界是 我们想到的最简单的形式。

8.4 对于 Rn 中的一个非空闭凸集,当且仅当它的回收锥只由零向量组成时,它是有界的。

如果 C 是有界的,那么它肯定不包含半线,这样的话0+C=0。另一方面,如果 C 是无界的,那么它包含一个非零向量序列x1,x2,,并且他们的欧几里得范数 |xi| 无限制的增加,向量 λixi 都属于单位球 S={x||x|=1} ,其中 λi=1/|xi| 。因为 S Rn的闭有界子集,所以 λ1x1,λ2x2, 的某个子序列将会收敛到某个值 y ,且yS,根据定理8.2可知,这个 y 0+C的一个非零向量。 ||

8.4.1 C 是闭的凸集,M是仿射集且使得 MC 是非空有界的,那么对于每个平行于 M 的仿射集M,MC是有界的。

根据平行的定义我们有 0+M=0+M ,假设 MC 不是空的,那么根据推论8.3.3我们有

0+(MC)=0+M0+C=0+M0+C=0+(MC)

因为 MC 是有界的,这就表明 0(MC)=0 ,于是 MC 是有界的。 ||

如果 C 是非空凸集,那么集合(0+C)0+C就称为 C 的线性空间(lineality space),它由零向量和所有满足条件的非零向量y组成,该条件就是对于每个 xC ,通过 x 并且方向为y的那条直线依然含于 C 中。线性空间中向量y的方向叫做 C 是线性的方向,当然如果C是闭的并且包含某条线 M ,那么所有平行于M且通过 C 中点的直线含于C,(这是定理8.3的特殊情况)线性空间与使得 C+y=C 的向量 y 集合是一样的。

C的线性空间是一个子空间,含于凸锥 0+C 的最大子空间(定理2.7),它的维数称为 C 的线性度(lineality)。

例如考虑圆筒

C={(ξ1,ξ2,ξ3)|ξ21+ξ221}R3

C 的线性空间是ξ3轴,所以 C 的线性度是1,实际上这里的C是直线和圆盘的直和。

一般而言,如果 C 是非平凡线性空间L中的非空凸集,显然我们可以将 C 表示成直和的形式

C=L+(CL)

其中 L L 的正交补,该表达式中集合CL的线性度是0, CL 的维数(也就是 C 的维数减去C的线性度)称为 C 的秩(rank),它是C非线性的度量。

秩为0的凸集是仿射集,当且仅当闭凸集不包含直线时,它的秩和它的维数一致。

考虑

C={x|x,biβi,iI}

C 的线性空间L由方程组

L={x|x,bi=0,iI}

给出。

接下来我们将上面的结果应用到凸函数上。令 f Rn上不恒等于 + 的凸函数, f 的上境图有一个回收锥0+(epi f),根据定义,当且仅当对于每个 (x,μ)epi f,λ0

(x,μ)+λ(y,v)=(x+λy,μ+λv)epi f

成立,那么 (y,v)0+(epi f) ,这就意味着对于每个 x,λ0

f(x+λy)f(x)+λv

实际上,根据定理8.1,对于每个 x,λ0 ,要想使不等式成立,只需要对每个 x,λ=1 成立即可。给定一个 y 值,使得(y,v)0+(epi f) v 值将形成R上的一个无界闭区间或者空区间,从而 0+(epi f) 是某个函数的上境图,我们称这函数为 f 的回收函数并且用f0+表示。那么根据定义

epi(f0+)=0+(epi f)

从而 f0+ 符号与我们之前第5节介绍的右标量乘法符号是一致的。

8.5 f 是正常凸函数,那么f的回收函数 f0+ 是正齐次正常凸函数。对于每个向量 y ,我们有

(f0+)(y)=sup{f(x+y)f(x)|xdom f}

如果 f 是闭的,那么f0+也是闭的并且对于任意 xdom f,f0+ 由下面的形式给出

(f0+)(y)=supλ>0f(x+λy)f(x)λ=limλf(x+λy)f(x)λ

第一个公式观察即可得出。条件 v(f0+)(y) 也意味着

vsupλ>0{[f(x+λy)f(x)]/λ},xdom f

(注意,从此是可以得出 (f0+)(y) 不可能是 )对于任意固定值 xdom f ,上确界给出了最小的实数值 v ,使得epi f 包含起点为 (x,f(x)) 方向为 (y,v) 的半线。如果 f 是闭的,那么epi f是闭的并且根据定理8.3,这个 v x无关,这就证明了定理中第二个上确界。因为利用函数 f 的凸性,差商[f(x+λy)f(x)]/λ λ 的非递减函数(定理23.1),所以上确界与 λ 的极限是一样的。上境图 epi f 是非空凸锥,如果 f 是闭的它也是闭的;因此,f0+就是一个正齐次正常凸函数,如果 f 是闭的它也是闭的。||

8.5.1 f 是正常凸函数,那么f0+至少是使得

f(z)f(x)+h(zx),z,x

的函数 h

f是闭的正常凸函数时, f 的回收锥可以闭包结构。令f是由 h 生成的正齐次凸函数,其中

h(λ,x)=f(x)+δ(λ|1)

换句话说,

g(λ,x)=(fλ)(x)(f0+)(x)+ifλ0ifλ=0ifλ<0

8.5.2 如果 f 是任意闭正常凸函数,那么对于每个ydom f我们有

(f0+)(y)=limλ0(fλ)(y)

如果 0dom f ,那么这个公式对每个 yRn 成立。

如果 0dom f ,那么定理8.5中第二个公式变成

(f0+)(y)=limλ[f(λy)f(0)]/λ=limλ0λf(λ1y)

即使 0dom f ,根据推论7.5.1,当对某个 λ>0,(λ,y) 属于 dom(cl g) 时,我们有( g 如上面所示)

(cl g)(0,y)=limλ0(cl g)(λ,y)

证毕。 ||

为了说明这个定理,我们考虑下面的函数

f1(x)=(1+x,Qx)1/2

其中 Q n×n的对称半正定矩阵。( f1 的凸性可从定理5.1推出,而 f0(x)=x,Qx1/2 的凸性通过对角化 Q 可以看出)根据推论8.5.2,

(f10+)(y)=limλ0λf1(λ1y)=limλ0(λ2+y,Qy)1/2=y,Qy1/2

另一方面,对于

f2(x)=x,Qx=a,x+α

利用同样的公式可得

(f20+)(y)=limλ0[λ1y,Qy+a,y+λα]={a,y+ifQy=0ifQy0

特别地,当 Q 是正定的(即也是非奇异的)时候,我们有f20+=δ(|0),当然对于任何有效定义域为有界的正常凸函数,公式依然成立。

一个非常有趣的例子是

f3(x)=log(eξ1++eξn),x=(ξ1,,ξn),n>1

( f3 的凸性由定理4.5可得,但是利用定理16.4可以以推导出来)另外一个例子是

(f30+)(y)=max{ηj|j=1,,n},y=(η1,,ηn)

虽然 f30+ 处处有限且 f3 本身有解析式,但是 f30+ 确实不可微的。

闭正常凸函数 f 的回收锥可以表征与f共轭凸函数有效定义域的支撑函数,这将在定理13.3中讨论。

8.6 f 是正常凸函数,y是一个向量,如果对于给定的 x ,我们有

limλ+inff(x+λy)<+

那么 x 将会有下面的性质:f(x+λy) λ 的非增函数,其中 <λ<+ 。当且仅当 (f0+)(y)0 成立时,那么这个性质对每个 x 都满足。当f是闭时,那么如果存在一个 xdom f 该性质满足,那么对每个 x ,该性质都满足。

根据定义,当且仅当 epi f 的回收锥包含向量 (y,0) (这就意味着对于每个 z,λ0 ,不等式 f(z+λy)f(z) 成立) 时, (f0+)(y)0 ,所以当且仅当对每个 x f(x+λy) λ 的非增函数时 (f0+)(y)0 ,其中 <λ<+ 。如果 f 是闭的,那么根据定理8.5最后一个公式,如果存在一个xdom f使得 f(x+λy) λ 的非增函数,那么可以得出 (f0+)(y)0 。现在假设 x 是使得

limλ+inff(x+λy)<α

的一点,其中 αR ,令 h R上的正常凸函数,并定义为 h(λ)=f(x+λy) h 的上境图包含形如(λk,α),k=1,2,的点序列,其中 λk+ ,这个序列的凸包是一条半线且方向是向量 (1,0) 所在的方向,这条半线包含在闭凸集 epi(cl h) 中,于是 (1,0) 属于 epi(cl h) 的回收锥,即 cl h R 上的非增函数,cl h的有效定义域肯定是上面的无界区间,闭包运算顶多在有效定义域的边界会比 h 值小(定理7.4),所以h本身一定是 R 上非增函数,由此可得f(x+λy) λ 的非增函数。 ||

8.6.1 f 是正常凸函数,y是一个向量,为了使 f(x+λy) 对每个 x 而言都是λ的常函数,其中 <λ< ,充分必要条件是 (f0+)(y)0 (f0+)(y)0 。当 f 为闭时,如果存在一个x使得对某个实值 α

f(x+λy)α,λR

成立,那么该条件依然满足。

8.6.2 凸函数 f 是任意仿射集M上恒定的

如果需要的话可以将 M 外的f重新定义为 + ,我们可以假设 M=dom f ,那么 f 是闭的(推论7.4.2)。根据前面的推论,沿着M中的每条线 f 都是不变的。因为M包含通过任意两点的直线,所以 f M 的所有点上值都一样。 ||

所有使得 (f0+)(y)0 的向量 y 组成的集合称为f的回收锥(注意,不要跟 epi f 的回收锥混淆了),这是包含0的凸锥,如果 f 为闭那么它也为闭。(它对应于0+(epi f) Rn 中水平超平面 {(y,0)|yRn} 的交)正如定理8.6所说的那样, f 回收锥中向量的方向称为f回退的方向或者 f 回收方向。

使得(f0+)(y)0,(f0+)(y)0的向量 y 组成的集合是含在f回收锥中的最大子空间(定理2.7),从推论8.6.1 的角度看,我们可以称其为 f 的恒定空间(constancy space),f恒定空间中向量的方向称为 f 不变的方向。

定理8.6前面的实例中,f1回收锥与恒定空间都等于 {y|Qy=0} ,而 f2 回收锥与恒定空间分别是

{y|Qy=0,a,y0},{y|Qy=0,a,y=0}

f3 回收锥是 Rn 的非正象限,但是恒定空间只有零向量组成。

8.7 f 是闭正常凸函数,那么所有形如{x|f(x)α},αR的非空水平集有相同的回收锥与相同的线性空间,也就是 f 的回收锥和恒定空间。

根据定理8.6:无论何时 f(x)α,λ0 ,当且仅当 f(x+λy)α 时, y 属于{x|f(x)α}的回收锥。 ||

8.7.1 f 是闭正常凸函数,如果{x|f(x)α}对一个 α 来说是非空且有界的,那么对每个 α ,它都是有界的。

应用定理8.4。 ||

8.8 对任意正常凸函数 f ,下面在向量y和实值 v 上的条件是等价的:

  1. 对每个向量x λR f(x+λy)=f(x)+λv

    • (y,v) 属于 epi f 的线性空间;
    • (f0+)(y)=(f0+)(y)=v
    • f 为闭时,如果存在xdom f使得 f(x+λy) λ 的仿射函数,那么 y 满足这些条件且v=(f0+)(y)

      (a) 成立,对每个 xdom f,f(x+y)f(x)=v ,根据定理8.5的第一个公式可得 v=(f0+)(y),v=(f0+)(y) ,所以 (a) 暗含 (c) 。接下来考虑 (c) ,其表明 (y,v),(y,v) 都属于 epi(f0+) (y,v),(y,v) 都属于 0+(epi f) ,这和条件 (b) 是一致的。最后, (b) 表明

      (epi f)λ(y,v)=epi f,λR

      对任意 λ ,左边的集合是 epi g ,其中 g 是定义如下的函数

      g(x)=f(x+λy)λv

      所以 (a) 肯定满足,由此可知 (a),(b),(c) 是等价的。定理中最后的断言从定理8.5的最后那个公式可以得出来。 ||

      使得 (f0+)(y)=(f0+)(y) 的向量 y 组成的集合称为正常凸函数f的线性空间(lineality space),它是 Rn 的子空间,凸集 epi f 在投影 (y,v)y 下线性空间的像并且在这个子空间上 f0+ 是线性的(定理4.8), f 线性空间中向量的方向称为该方向上f是仿射的,线性空间的维数是 f 的线性度,f的秩为 f 的维数减去f的线性度。

      秩为0的正常凸函数是部分仿射函数(partial affine function),即沿着某个仿射集该函数与仿射函数是一致的,而其他地方为 + 。对于闭正常凸函数 f ,当且仅当沿着dom f中任意直线它都不是仿射时,我们有

      rank f=dom f

      凸集的秩明显与指示函数的秩是一致的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值